SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sunol A) "

Sökning: WFRF:(Sunol A)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Forsby, A, et al. (författare)
  • Neuronal in vitro models for the estimation of acute systemic toxicity.
  • 2009
  • Ingår i: Toxicology in vitro : an international journal published in association with BIBRA. - : Elsevier BV. - 1879-3177. ; 23:8, s. 1564-1569
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of the EU funded integrated project "ACuteTox" is to develop a strategy in which general cytotoxicity, together with organ-specific endpoints and biokinetic features, are taken into consideration in the in vitro prediction of oral acute systemic toxicity. With regard to the nervous system, the effects of 23 reference chemicals were tested with approximately 50 endpoints, using a neuronal cell line, primary neuronal cell cultures, brain slices and aggregated brain cell cultures. Comparison of the in vitro neurotoxicity data with general cytotoxicity data generated in a non-neuronal cell line and with in vivo data such as acute human lethal blood concentration, revealed that GABA(A) receptor function, acetylcholine esterase activity, cell membrane potential, glucose uptake, total RNA expression and altered gene expression of NF-H, GFAP, MBP, HSP32 and caspase-3 were the best endpoints to use for further testing with 36 additional chemicals. The results of the second analysis showed that no single neuronal endpoint could give a perfect improvement in the in vitro-in vivo correlation, indicating that several specific endpoints need to be analysed and combined with biokinetic data to obtain the best correlation with in vivo acute toxicity.
  •  
2.
  •  
3.
  •  
4.
  • Galofré, Mireia, et al. (författare)
  • GABA(A) receptor and cell membrane potential as functional endpoints in cultured neurons to evaluate chemicals for human acute toxicity
  • 2010
  • Ingår i: Neurotoxicology and Teratology. - : Elsevier BV. - 0892-0362 .- 1872-9738. ; 32, s. 52-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicity risk assessment for chemical-induced human health hazards relies mainly on data obtained from animal experimentation, human studies and epidemiology. In vitro testing for acute toxicity based on cytotoxicity assays predicts 70 - 80% of rodent and human toxicity. The nervous system is particularly vulnerable to chemical exposure which may result in different toxicity features. Acute human toxicity related to adverse neuronal function is usually a result of over-excitation or depression of the nervous system. The major molecular and cellular mechanisms involved in such reactions include GABAergic, glutamatergic and cholinergic neurotransmission, regulation of cell and mitochondrial membrane potential, and those critical for maintaining central nervous system functionality, such as controlling cell energy. In this work, a set of chemicals that are used in pharmacy, industry, biocide treatments or are often abused by drug users are tested for their effects on GABA(A) receptor activity, GABA and glutamate transport, cell membrane potential and cell viability in primary neuronal cultures. GABA(A) receptor function was inhibited by compounds for which seizures have been observed after severe human poisoning. Commonly abused drugs inhibit GABA uptake but not glutamate uptake. Most neurotoxins altered membrane potential. The GABA(A) receptor, GABA uptake and cell membrane potential assays were those that identified the highest number of chemicals as toxic at low concentrations. These results show that in vitro cell assays may identify compounds that produce acute neurotoxicity in humans, provided that in vitro models expressing neuronal targets relevant for acute neural dysfunctions are used.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy