SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Superti Furga Giulio) "

Sökning: WFRF:(Superti Furga Giulio)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bösl, Korbinian, et al. (författare)
  • Common Nodes of Virus-Host Interaction Revealed Through an Integrated Network Analysis
  • 2019
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Viruses are one of the major causes of acute and chronic infectious diseases and thus a major contributor to the global burden of disease. Several studies have shown how viruses have evolved to hijack basic cellular pathways and evade innate immune response by modulating key host factors and signaling pathways. A collective view of these multiple studies could advance our understanding of virus-host interactions and provide new therapeutic perspectives for the treatment of viral diseases. Here, we performed an integrative meta-analysis to elucidate the 17 different host-virus interactomes. Network and bioinformatics analyses showed how viruses with small genomes efficiently achieve the maximal effect by targeting multifunctional and highly connected host proteins with a high occurrence of disordered regions. We also identified the core cellular process subnetworks that are targeted by all the viruses. Integration with functional RNA interference (RNAi) datasets showed that a large proportion of the targets are required for viral replication. Furthermore, we performed an interactome-informed drug re-purposing screen and identified novel activities for broad-spectrum antiviral agents against hepatitis C virus and human metapneumovirus. Altogether, these orthogonal datasets could serve as a platform for hypothesis generation and follow-up studies to broaden our understanding of the viral evasion landscape.
  •  
2.
  • Habjan, Matthias, et al. (författare)
  • NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase
  • 2009
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 83:9, s. 4365-4375
  • Tidskriftsartikel (refereegranskat)abstract
    • Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.
  •  
3.
  • Hopkins, Sarah, et al. (författare)
  • Mig6 Is a Sensor of EGF Receptor Inactivation that Directly Activates c-Abl to Induce Apoptosis during Epithelial Homeostasis.
  • 2012
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 23:3, s. 547-559
  • Tidskriftsartikel (refereegranskat)abstract
    • A fundamental aspect of epithelial homeostasis is the dependence on specific growth factors for cell survival, yet the underlying mechanisms remain obscure. We found an "inverse" mode of receptor tyrosine kinase signaling that directly links ErbB receptor inactivation to the induction of apoptosis. Upon ligand deprivation Mig6 dissociates from the ErbB receptor and binds to and activates the tyrosine kinase c-Abl to trigger p73-dependent apoptosis in mammary epithelial cells. Deletion of Errfi1 (encoding Mig6) and inhibition or RNAi silencing of c-Abl causes impaired apoptosis and luminal filling of mammary ducts. Mig6 activates c-Abl by binding to the kinase domain, which is prevented in the presence of epidermal growth factor (EGF) by Src family kinase-mediated phosphorylation on c-Abl-Tyr488. These results reveal a receptor-proximal switch mechanism by which Mig6 actively senses EGF deprivation to directly activate proapoptotic c-Abl. Our findings challenge the common belief that deprivation of growth factors induces apoptosis passively by lack of mitogenic signaling.
  •  
4.
  •  
5.
  • Upadhyay, Arunkumar S., et al. (författare)
  • Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity
  • 2014
  • Ingår i: Cellular Microbiology. - : Hindawi Limited. - 1462-5814 .- 1462-5822. ; 16:6, s. 834-848
  • Tidskriftsartikel (refereegranskat)abstract
    • Viperin is an interferon-induced protein with a broad antiviral activity. This evolutionary conserved protein contains a radical S-adenosyl-l-methionine (SAM) domain which has been shown in vitro to hold a [4Fe-4S] cluster. We identified tick-borne encephalitis virus (TBEV) as a novel target for which human viperin inhibits productionof the viral genome RNA. Wt viperin was found to require ER localization for full antiviral activity and to interact with the cytosolic Fe/S protein assembly factor CIAO1. Radiolabelling in vivo revealed incorporation of Fe-55, indicative for the presence of an Fe-S cluster. Mutation of the cysteine residues ligating the Fe-S cluster in the central radical SAM domain entirely abolished both antiviral activity and incorporation of Fe-55. Mutants lacking the extreme C-terminal W361 did not interact with CIAO1, were not matured, and were antivirally inactive. Moreover, intracellular removal of SAM by ectopic expression of the bacteriophage T3 SAMase abolished antiviral activity. Collectively, our data suggest that viperin requires CIAO1 for [4Fe-4S] cluster assembly, and acts through an enzymatic, Fe-S cluster- and SAM-dependent mechanism to inhibit viral RNA synthesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy