SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Surinach S.) "

Sökning: WFRF:(Surinach S.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Varea, A., et al. (författare)
  • Tuneable magnetic patterning of paramagnetic Fe60Al40 (at. %) by consecutive ion irradiation through pre-lithographed shadow masks
  • 2011
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 109:9, s. 093918-
  • Tidskriftsartikel (refereegranskat)abstract
    • Arrays of ferromagnetic circular dots (with diameters ranging from 225 to 420 nm) have been prepared at the surface of atomically ordered paramagnetic Fe60Al40 (at. %) sheets by means of ion irradiation through prelithographed poly(methyl methacrylate) (PMMA) masks. The cumulative effects of consecutive ion irradiation (using Ar+ ions at 1.2 x 10(14) ions/cm(2) with 10, 13, 16, 19 and 22 keV incident energies) on the properties of the patterned dots have been investigated. A progressive increase in the overall magneto-optical Kerr signal is observed for increasingly larger irradiation energies, an effect which is ascribed to accumulation of atomic disorder. Conversely, the coercivity, H-C, shows a maximum after irradiating at 16-19 keV and it decreases for larger irradiation energies. Such a decrease in H-C is ascribed to the formation of vortex states during magnetization reversal, in agreement with results obtained from micromagnetic simulations. At the same time, the PMMA layer, with an initial thickness of 90 nm, becomes progressively thinned during the successive irradiation processes. After irradiation at 22 keV, the remaining PMMA layer is too thin to stop the incoming ions and, consequently, ferromagnetism starts to be generated underneath the nominally masked areas. These experimental results are in agreement with calculations using the Monte-Carlo simulation Stopping Range of Ions in Matter software, which show that for exceedingly thin PMMA layers Ar+ ions can reach the Fe60Al40 layer despite the presence of the mask.
  •  
2.
  • Estrader, M., et al. (författare)
  • Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles
  • 2013
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • The growing miniaturization demand of magnetic devices is fuelling the recent interest in bi-magnetic nanoparticles as ultimate small components. One of the main goals has been to reproduce practical magnetic properties observed so far in layered systems. In this context, although useful effects such as exchange bias or spring magnets have been demonstrated in core/shell nanoparticles, other interesting key properties for devices remain elusive. Here we show a robust antiferromagnetic (AFM) coupling in core/shell nanoparticles which, in turn, leads to the foremost elucidation of positive exchange bias in bi-magnetic hard-soft systems and the remarkable regulation of the resonance field and amplitude. The AFM coupling in iron oxide-manganese oxide based, soft/hard and hard/soft, core/shell nanoparticles is demonstrated by magnetometry, ferromagnetic resonance and X-ray magnetic circular dichroism. Monte Carlo simulations prove the consistency of the AFM coupling. This unique coupling could give rise to more advanced applications of bi-magnetic core/shell nanoparticles.
  •  
3.
  • Lopez-Ortega, A., et al. (författare)
  • Strongly exchange coupled inverse ferrimagnetic soft/hard, MnxFe3-xO4/FexMn3-xO4, core/shell heterostructured nanoparticles
  • 2012
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 4:16, s. 5138-5147
  • Tidskriftsartikel (refereegranskat)abstract
    • Inverted soft/hard, in contrast to conventional hard/soft, bi-magnetic core/shell nanoparticles of MnxFe3-xO4/FexMn3-xO4 with two different core sizes (7.5 and 11.5 nm) and fixed shell thickness (similar to 0.6 nm) have been synthesized. The structural characterization suggests that the particles have an interface with a graded composition. The magnetic characterization confirms the inverted soft/hard structure and evidences a strong exchange coupling between the core and the shell. Moreover, larger soft core sizes exhibit smaller coercivities and loop shifts, but larger blocking temperatures, as expected from spring-magnet or graded anisotropy structures. The results indicate that, similar to thin film systems, the magnetic properties of soft/hard core/shell nanoparticles can be fine tuned to match specific applications.
  •  
4.
  •  
5.
  •  
6.
  • Krycka, K. L., et al. (författare)
  • Correlating material-specific layers and magnetic distributions within onion-like Fe3O4/MnO/gamma-Mn2O3 core/shell nanoparticles
  • 2013
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 113:17, s. 17B531-
  • Tidskriftsartikel (refereegranskat)abstract
    • The magnetic responses of two nanoparticle systems comprised of Fe3O4/gamma-Mn2O3 (soft ferrimagnetic, FM/hard FM) and Fe3O4/MnO/gamma-Mn2O3 (soft FM/antiferromagnetic, AFM/hard FM) are compared, where the MnO serves to physically decouple the FM layers. Variation in the temperature and applied field allows for Small Angle Neutron Scattering (SANS) measurements of the magnetic moments both parallel and perpendicular to an applied field. Data for the bilayer particle indicate that the graded ferrimagnetic layers are coupled and respond to the field as a single unit. For the trilayer nanoparticles, magnetometry suggests a Curie temperature (T-C) approximate to 40 K for the outer gamma-Mn2O3 component, yet SANS reveals an increase in the magnetization associated with outer layer that is perpendicular to the applied field above T-C during magnetic reversal. This result suggests that the gamma-Mn2O3 magnetically reorients relative to the applied field as the temperature is increased above 40 K.
  •  
7.
  • Uriarte, J L, et al. (författare)
  • Properties of FeNiB-based metallic glasses with primary BCC and FCC crystallisation products.
  • 2003
  • Ingår i: Journal of Magnetism and Magnetic Materials. - 0304-8853. ; 254-255, s. 532-534
  • Tidskriftsartikel (refereegranskat)abstract
    • FeSiB tapes have long been commercialised for their excellent soft-magnetic properties but do not manifest a glass transition temperature Tg as crystallisation intervenes. In this work, we present the crystallisation and properties of two Fe-based glasses, which show a glass transition before crystallisation. Using Ni and Co substitution, we can design glasses that form primary FCC or BCC FeNiCo solutions in their first stage of crystallisation followed by the formation of the metastable (FeNiCo)4B (C6Cr23-type cF116) intermetallic phase. Thermal and structural and magnetic properties were compared during heat treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy