SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sustersic Iztok) "

Search: WFRF:(Sustersic Iztok)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abrahamsen, Rune, et al. (author)
  • Dynamic Response of Tall Timber Buildings Under Service Load : The DynaTTB Research Program
  • 2020
  • In: EURODYN 2020, XI international conferece on structural dynamics. - : National Technical University of Athens. - 9786188507210 ; , s. 4900-4910
  • Conference paper (peer-reviewed)abstract
    • Wind-induced dynamic excitation is becoming a governing design action determin-ing size and shape of modern Tall Timber Buildings (TTBs). The wind actions generate dynamic loading, causing discomfort or annoyance for occupants due to the perceived horizontal sway – i.e. vibration serviceability failure. Although some TTBs have been instrumented and meas-ured to estimate their key dynamic properties (natural frequencies and damping), no systematic evaluation of dynamic performance pertinent to wind loading has been performed for the new and evolving construction technology used in TTBs. The DynaTTB project, funded by the Forest Value research program, mixes on site measurements on existing buildings excited by heavy shakers, for identification of the structural system, with laboratory identification of building elements mechanical features coupled with numerical modelling of timber structures. The goal is to identify and quantify the causes of vibration energy dissipation in modern TTBs and pro-vide key elements to FE modelers.The first building, from a list of 8, was modelled and tested at full scale in December 2019. Some results are presented in this paper. Four other buildings will be modelled and tested in spring 2020.
  •  
2.
  • Abrahamsen, Rune, et al. (author)
  • Dynamic response of tall timber buildings under service load : results from the dynattb research program
  • 2023
  • In: World Conference on Timber Engineering 2023 (WCTE 2023). - : Curran Associates, Inc.. - 9781713873297 ; , s. 2907-2914
  • Conference paper (peer-reviewed)abstract
    • Wind-induced dynamic excitation is a governing design action determining size and shape of modern Tall Timber Buildings (TTBs). The wind actions generate dynamic loading, causing discomfort or annoyance for occupants due to the perceived horizontal sway, i.e. vibration serviceability problem. Although some TTBs have been instrumented and measured to estimate their key dynamic properties (eigenfrequencies, mode shapes and damping), no systematic evaluation of dynamic performance pertinent to wind loading had been performed for the new and evolving construction technologies used in TTBs. The DynaTTB project, funded by the ForestValue research program, mixed on site measurements on existing buildings excited by mass inertia shakers (forced vibration) and/or the wind loads (ambient vibration), for identification of the structural system, with laboratory identification of building elements mechanical features, coupled with numerical modelling of timber structures. The goal is to identify and quantify the causes of vibration energy dissipation in modern TTBs and provide key elements to finite element models. This paper presents an overview of the results of the project and the proposed Guidelines for design of TTBs in relation to their dynamic properties.
  •  
3.
  • Fink, Gerhard, et al. (author)
  • HOLISTIC DESIGN OF TALLER TIMBER BUILDINGS - COST ACTION HELEN (CA20139)
  • 2023
  • In: World Conference on Timber Engineering (WCTE 2023). ; 2, s. 1001-1008
  • Conference paper (peer-reviewed)abstract
    • With the worldwide construction sector being responsible for one third of carbon dioxide emissions, as well as forty percent of the world’s energy use and waste production, a shift to sustainable and renewable construction techniques is crucial. Engineered timber, a champion of sustainable construction materials, has evolved to a stage that enables the construction of not only family housing but also taller buildings so far commonly built from concrete or steel. Designing taller timber buildings made is more demanding than their concrete and steel counterparts. Whereas different design aspects (architectural, structural, fire safety, acoustics, etc.) of concrete buildings can work almost independently, the design of taller timber buildings should be performed with intensive collaboration among the design teams. It is therefore crucial to address taller multi-storey timber buildings from a collaborative and interdisciplinary perspective, considering static, dynamic, fire, acoustic, human health, and other aspects in parallel and not in isolation. Only through interdisciplinary analysis and interaction can a set of holistic design guidelines be developed that will enable the safe construction of taller timber buildings, as well as respect human wellbeing demands. In this paper, the COST Action CA20139 will be presented and the main aims will be discussed.
  •  
4.
  •  
5.
  • Han, Lei, et al. (author)
  • Adhesive- and Metal-Free Assembly Techniques for Prefabricated Multi-Layer Engineered Wood Products: A Review on Wooden Connectors
  • 2023
  • In: Forests. - : MDPI. - 1999-4907. ; 14:2
  • Research review (peer-reviewed)abstract
    • Engineered wood products (EWPs) are being increasingly used as construction materials. EWPs are currently being made using synthetic adhesives or metal fasteners, which lead to poor recyclability and reusability. Therefore, this review paper focused on emerging adhesive- and metal-free assembling techniques including wood dowels, rotary-dowel welding, wooden nails, and dovetail joining as alternative ways of making prefabricated EWPs. This will contribute towards green construction and optimising the building process to minimise its negative impact on the environment and its inhabitants, while maximising the positive aspects of the finished structure. The respective advantages and shortcomings will be compared with those of equivalent EWPs. In general, the dowel-laminated timber (DLT) provides sufficient load-bearing capacity and even better ductility than EWPs of equivalent size, but its relatively low stiffness under a bending load limits its application as a structural element. Optimised manufacturing parameters such as dowel species, dowel spacing, dowel diameter, dowel insertion angle, dowel shape, etc. could be studied to improve the stiffness. The improved mechanical properties and tight fitting due to set-recovery of densified wood support its use as sustainable alternatives to hardwood dowels in DLT to overcome problems such as the loosening of connections over time and dimensional instability. The rotary welding technology could also enhance the strength and long-term performance of dowel-type joints, but its poor water resistance needs further investigation. The main obstacles to implementing DLT products in the market are missing technical information and design guidelines based on national codes.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view