SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svagan A. J.) "

Sökning: WFRF:(Svagan A. J.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Svagan, A. J., et al. (författare)
  • Rhamnogalacturonan-I based microcapsules for targeted drug release
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 11:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were loaded with a fluorescent dye (model drug). The capsules showed negligible and very little in vitro release when subjected to media simulating gastric and intestinal fluids, respectively. However, upon exposure to a cocktail of commercial RG-I cleaving enzymes, ~ 9 times higher release was observed, demonstrating that the capsules can be opened by enzymatic degradation. The combined results suggest a potential platform for targeted drug delivery in the terminal gastro-intestinal tract.
  •  
2.
  • Lombardo, S., et al. (författare)
  • Toward Improved Understanding of the Interactions between Poorly Soluble Drugs and Cellulose Nanofibers
  • 2018
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 34:19, s. 5464-5473
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose nanofibers (CNFs) have interesting physicochemical and colloidal properties that have been recently exploited in novel drug-delivery systems for tailored release of poorly soluble drugs. The morphology and release kinetics of such drug-delivery systems heavily relied on the drug-CNF interactions; however, in-depth understanding of the interactions was lacking. Herein, the interactions between a poorly soluble model drug molecule, furosemide, and cationic cellulose nanofibers with two different degrees of substitution are studied by sorption experiments, Fourier transform infrared spectroscopy, and molecular dynamics (MD) simulation. Both MD simulations and experimental results confirmed the spontaneous sorption of drug onto CNF. Simulations further showed that adsorption occurred by the flat aryl ring of furosemide. The spontaneous sorption was commensurate with large entropy gains as a result of release of surface-bound water. Association between furosemide molecules furthermore enabled surface precipitation as indicated by both simulations and experiments. Finally, sorption was also found not to be driven by charge neutralization, between positive CNF surface charges and the furosemide negative charge, so that surface area is the single most important parameter determining the amount of sorbed drug. An optimized CNF-furosemide drug-delivery vehicle thus needs to have a maximized specific surface area irrespective of the surface charge with which it is achieved. The findings also provide important insights into the design principles of CNF-based filters suitable for removal of poorly soluble drugs from wastewater.
  •  
3.
  •  
4.
  • Paulraj, Thomas, et al. (författare)
  • Porous Cellulose Nanofiber-Based Microcapsules for Biomolecular Sensing
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 10:48, s. 41146-41154
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose nanofibers (CNFs) have recently attracted a lot of attention in sensing because of their multifunctional character and properties such as renewability, nontoxicity, biodegradability, printability, and optical transparency in addition to unique physicochemical, barrier, and mechanical properties. However, the focus has exclusively been devoted toward developing two-dimensional sensing platforms in the form of nanopaper or nanocellulose-based hydrogels. To improve the flexibility and sensing performance in situ, for example, to detect biomarkers in vivo for early disease diagnostics, more advanced CNF-based structures are needed. Here, we developed porous and hollow, yet robust, CNF-based microcapsules using only the primary plant cell wall components, CNF, pectin, and xyloglucan, to assemble the capsule wall. The fluorescein isothiocyanate-labeled dextrans with M-w of 70 and 2000 kDa could enter the hollow capsules at a rate of 0.13 +/- 0.04 and 0.014 +/- 0.009 s(-1), respectively. This property is very attractive because it minimizes the influence of mass transport through the capsule wall on the response time. As a proof of concept, glucose oxidase (GOx) enzyme was loaded (and cross-linked) in the microcapsule interior with an encapsulation efficiency of 68 +/- 2%. The GOx-loaded microcapsules were immobilized on a variety of surfaces (here, inside a flow channel, on a carbon-coated sensor or a graphite rod) and glucose concentrations up to 10 mM could successfully be measured. The present concept offers new opportunities in the development of simple, more efficient, and disposable nanocellulose-based analytical devices for several sensing applications including environmental monitoring, healthcare, and diagnostics.
  •  
5.
  • Svagan, Anna J., et al. (författare)
  • Cellulose Nanocomposite Biopolymer Foam-Hierarchical Structure Effects on Energy Absorption
  • 2011
  • Ingår i: ACS APPLIED MATERIALS & INTERFACES. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 3:5, s. 1411-1417
  • Tidskriftsartikel (refereegranskat)abstract
    • Starch is an attractive biofoam candidate as replacement of expanded polystyrene (EPS) in packaging materials. The main technical problems with starch foam include its hygroscopic nature, sensitivity of its mechanical properties to moisture content, and much lower energy absorption than EPS. In the present study, a starch-based biofoam is for the first time able to reach comparable mechanical properties (E = 32 MPa, compressive yield strength, 630 kPa) to EPS at 50% relative humidity and similar relative density. The reason is the nanocomposite concept concept in the form of a cellulose nanofiber network reinforcing the hygroscopic amylopectin starch matrix in the cell wall. The biofoams are prepared by the freezing/freeze-drying technique and subjected to compressive loading. Cell structure is characterized by FE-SEM of cross sections. Mechanical properties are related to cell structure and cell wall nanocomposite composition. Hierarchically structured biofoams are demonstrated to be interesting materials with potential for strongly improved mechanical properties.
  •  
6.
  • Svagan, Anna J., et al. (författare)
  • Cellulose Nanofiber/Nanocrystal Reinforced Capsules : A Fast and Facile Approach Toward Assembly of Liquid-Core Capsules with High Mechanical Stability
  • 2014
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 15:5, s. 1852-1859
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquid-core capsules of high mechanical stability open up for many solid state-like applications where functionality depending on liquid mobility is vital. Herein, a novel concept for fast and facile improvement of the mechanical properties of walls of liquid-core capsules is reported. By imitating nature's own way of enhancing the mechanical properties in liquid-core capsules, the parenchyma plant cells found in fruits and vegetables, a blend of short cellulose nanofibers (<1 mu m, NFC) and nanocrystals (CNC) was exploited in the creation of the capsule walls. The NFC/CNC blend was prepared from a new version of the classical wood pulp hydrolysis. The capsule shell consisted of a covalently (by aromatic diisocyanate) cross-linked NFC/CNC structure at the outer capsule wall and an inner layer dominated by aromatic polyurea. The mechanical properties revealed an effective capsule elastic modulus of 4.8 GPa at 17 wt % NFC/CNC loading, about six times higher compared to a neat aromatic polyurea capsule (0.79 GPa) and 3 orders of magnitude higher than previously reported capsules from regenerated cellulose (0.0074 GPa). The outstanding mechanical properties are ascribed to the dense nanofiber structure, present in the outer part of the capsule wall, that is formed by oriented NFC/CNC of high average aspect ratio (L/d similar to 70) and held together by both covalent (urethane bonds) and physical bonds (hydrogen bonds).
  •  
7.
  • Svagan, A.J., et al. (författare)
  • Liquid-core nanocellulose-shell capsules with tunable oxygen permeability
  • 2016
  • Ingår i: Carbohydrate Polymers. - : Elsevier. - 0144-8617 .- 1879-1344. ; 136, s. 292-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Encapsulation of oxygen sensitive components is important in several areas, including those in the food and pharmaceutical sectors, in order to improve shelf-life (oxidation resistance). Neat nanocellulose films demonstrate outstanding oxygen barrier properties, and thus nanocellulose-based capsules are interesting from the perspective of enhanced protection from oxygen. Herein, two types of nanocellulose-based capsules with liquid hexadecane cores were successfully prepared; a primary nanocellulose polyurea-urethane capsule (diameter: 1.66 μm) and a bigger aggregate capsule (diameter: 8.3 μm) containing several primary capsules in a nanocellulose matrix. To quantify oxygen permeation through the capsule walls, an oxygen-sensitive spin probe was dissolved within the liquid hexadecane core, allowing non-invasive measurements (spin-probe oximetry, electron spin resonance, ESR) of the oxygen concentration within the core. It was observed that the oxygen uptake rate was significantly reduced for both capsule types compared to a neat hexadecane solution containing the spin-probe, i.e. the slope of the non-steady state part of the ESR-curve was approximately one-third and one-ninth for the primary nanocellulose capsule and aggregated capsule, respectively, compared to that for the hexadecane sample. The transport of oxygen was modeled mathematically and by fitting to the experimental data, the oxygen diffusion coefficients of the capsule wall was determined. These values were, however, lower than expected and one plausible reason for this was that the ESR-technique underestimate the true oxygen uptake rate in the present systems at non-steady conditions, when the overall diffusion of oxygen was very slow.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy