SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svahn Sara L) "

Sökning: WFRF:(Svahn Sara L)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Björk, Sara M., et al. (författare)
  • Metabolite profiling of microfluidic cell culture conditions for droplet based screening
  • 2015
  • Ingår i: Biomicrofluidics. - : AIP Publishing. - 1932-1058. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format.
  •  
3.
  • Gutiérrez, Saray, et al. (författare)
  • Effects of Omega-3 Fatty Acids on Immune Cells.
  • 2019
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 20:20
  • Forskningsöversikt (refereegranskat)abstract
    • Alterations on the immune system caused by omega-3 fatty acids have been described for 30 years. This family of polyunsaturated fatty acids exerts major alterations on the activation of cells from both the innate and the adaptive immune system, although the mechanisms for such regulation are diverse. First, as a constitutive part of the cellular membrane, omega-3 fatty acids can regulate cellular membrane properties, such as membrane fluidity or complex assembly in lipid rafts. In recent years, however, a new role for omega-3 fatty acids and their derivatives as signaling molecules has emerged. In this review, we describe the latest findings describing the effects of omega-3 fatty acids on different cells from the immune system and their possible molecular mechanisms.
  •  
4.
  • Svahn, Sara L, et al. (författare)
  • Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis
  • 2016
  • Ingår i: Infection and Immunity. - : American Society for Microbiology. - 0019-9567 .- 1098-5522. ; 84:4, s. 1205-1213
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics, S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus. Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival.
  •  
5.
  • Svahn, Sara L, et al. (författare)
  • Dietary polyunsaturated fatty acids increase survival and decrease bacterial load during septic S. aureus infection, and improve neutrophil function in mice
  • 2015
  • Ingår i: Infection and Immunity. - 0019-9567 .- 1098-5522. ; 83:2, s. 514-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe infection, including sepsis, is an increasing clinical problem that causes prolonged morbidity and substantial mortality. At present, antibiotics are essentially the only pharmacological treatment for sepsis. The incidence of resistance to antibiotics is increasing and it is therefore critical to find new therapies for sepsis. Staphylococcus aureus (S. aureus) is a major cause of septic mortality. Neutrophils play an important role in the defense against bacterial infections. We have shown that a diet with high levels of dietary saturated fatty acids decreases survival in septic mice, but the mechanisms behind remain elusive. The aim of the present study was to investigate how the differences in dietary fat composition affect survival and bacterial load after experimental septic infection and neutrophil function in uninfected mice. We found that, after S. aureus infection, mice fed polyunsaturated high fat diet (HFD/P) for 8 weeks had increased survival and decreased bacterial load during sepsis compared with mice fed saturated high fat diet (HFD/S), and similar to that of mice fed low fat diet (LFD). Uninfected mice fed HFD/P had increased frequency of neutrophils in bone marrow compared with mice fed HFD/S. In addition, mice fed HFD/P had a higher frequency of neutrophils recruited to the site of inflammation in response to peritoneal injection of thioglycollate compared with HFD/S. Differences between the proportion of dietary protein and carbohydrate did not affect septic survival at all. In conclusion, polyunsaturated dietary fat increased both survival and efficiency of bacterial clearance during septic S. aureus infection. Moreover, this diet increased the frequency and chemotaxis of neutrophils, key components of the immune response to S. aureus infections.
  •  
6.
  • Svahn, Sara L, et al. (författare)
  • Dietary Polyunsaturated Fatty Acids Promote Neutrophil Accumulation in the Spleen by Altering Chemotaxis and Delaying Cell Death
  • 2019
  • Ingår i: Infection and Immunity. - : American Society for Microbiology. - 0019-9567 .- 1098-5522. ; 87:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophils are the most abundant circulating leukocytes in humans and are essential for the defense against invading pathogens. Like many other cells of an organism, neutrophils can be highly influenced by the diet. We have previously described that mice fed a high-fat diet rich in polyunsaturated fatty acids (HFD-P) present a higher frequency of neutrophils in bone marrow than mice fed a high-fat diet rich in saturated fatty acids (HFD-S). Interestingly, such an increase correlated with improved survival against bacterium-induced sepsis. In this study, we aimed to investigate the effects of dietary polyunsaturated and saturated fatty acids on neutrophil homeostasis. We found that HFD-P specifically induced the accumulation of neutrophils in the marginal pools of the spleen and liver. The accumulation of neutrophils in the spleen was a result of a dual effect of polyunsaturated fatty acids on neutrophil homeostasis. First, polyunsaturated fatty acids enhanced the recruitment of neutrophils from the circulation into the spleen via chemokine secretion. Second, they delayed neutrophil cell death in the spleen. Interestingly, these effects were not observed in mice fed a diet rich in saturated fatty acids, suggesting that the type of fat rather than the amount of fat mediates the alterations in neutrophil homeostasis. In conclusion, our results show that dietary polyunsaturated fatty acids have a strong modulatory effect on neutrophil homeostasis that may have future clinical applications.
  •  
7.
  • Svahn, Sara L., et al. (författare)
  • Dietary Polyunsaturated Fatty Acids Promote Neutrophil Accumulation in the Spleen by Altering Chemotaxis and Delaying Cell Death
  • 2019
  • Ingår i: Infection and Immunity. - 1098-5522 .- 0019-9567. ; 87:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophils are the most abundant circulating leukocytes in humans and are essential for the defense against invading pathogens. Like many other cells of an organism, neutrophils can be highly influenced by the diet. We have previously described that mice fed a high-fat diet rich in polyunsaturated fatty acids (HFD-P) present a higher frequency of neutrophils in bone marrow than mice fed a high-fat diet rich in saturated fatty acids (HFD-S). Interestingly, such an increase correlated with improved survival against bacterium-induced sepsis. In this study, we aimed to investigate the effects of dietary polyunsaturated and saturated fatty acids on neutrophil homeostasis. We found that HFD-P specifically induced the accumulation of neutrophils in the marginal pools of the spleen and liver. The accumulation of neutrophils in the spleen was a result of a dual effect of polyunsaturated fatty acids on neutrophil homeostasis. First, polyunsaturated fatty acids enhanced the recruitment of neutrophils from the circulation into the spleen via chemokine secretion. Second, they delayed neutrophil cell death in the spleen. Interestingly, these effects were not observed in mice fed a diet rich in saturated fatty acids, suggesting that the type of fat rather than the amount of fat mediates the alterations in neutrophil homeostasis. In conclusion, our results show that dietary polyunsaturated fatty acids have a strong modulatory effect on neutrophil homeostasis that may have future clinical applications.
  •  
8.
  • Svahn, Sara L, et al. (författare)
  • Six Tissue Transcriptomics Reveals Specific Immune Suppression in Spleen by Dietary Polyunsaturated Fatty Acids
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Dietary polyunsaturated fatty acids (PUFA) are suggested to modulate immune function, but the effects of dietary fatty acids composition on gene expression patterns in immune organs have not been fully characterized. In the current study we investigated how dietary fatty acids composition affects the total transcriptome profile, and especially, immune related genes in two immune organs, spleen (SPL) and bone marrow cells (BMC). Four tissues with metabolic function, skeletal muscle (SKM), white adipose tissue (WAT), brown adipose tissue (BAT), and liver (LIV), were investigated as a comparison. Following 8 weeks on low fat diet (LFD), high fat diet (HFD) rich in saturated fatty acids (HFD-S), or HFD rich in PUFA (HFD-P), tissue transcriptomics were analyzed by microarray and metabolic health assessed by fasting blood glucose level, HOMA-IR index, oral glucose tolerance test as well as quantification of crown-like structures in WAT. HFD-P corrected the metabolic phenotype induced by HFD-S. Interestingly, SKM and BMC were relatively inert to the diets, whereas the two adipose tissues (WAT and BAT) were mainly affected by HFD per se (both HFD-S and HFD-P). In particular, WAT gene expression was driven closer to that of the immune organs SPL and BMC by HFDs. The LIV exhibited different responses to both of the HFDs. Surprisingly, the spleen showed a major response to HFD-P (82 genes differed from LFD, mostly immune genes), while it was not affected at all by HFD-S (0 genes differed from LFD). In conclusion, the quantity and composition of dietary fatty acids affected the transcriptome in distinct manners in different organs. Remarkably, dietary PUFA, but not saturated fat, prompted a specific regulation of immune related genes in the spleen, opening the possibility that PUFA can regulate immune function by influencing gene expression in this organ.
  •  
9.
  • Svahn, Sara L, et al. (författare)
  • Spleen proteomics data from high fat diet fed mice
  • 2020
  • Ingår i: Data in Brief. - : Elsevier BV. - 2352-3409. ; 32
  • Tidskriftsartikel (refereegranskat)abstract
    • The composition of the diet affects many processes in the body, including body weight and endocrine system. We have previously shown that dietary fat also affects the immune system. Mice fed high fat diet rich in polyunsaturated fatty acids survive S. aureus infection to a much greater extent than mice fed high fat diet rich in saturated fatty acids. Here we present data regarding the dietary effects on protein expression in spleen from mice fed three different diets, I) low fat/chow diet (LFD, n = 4), II) high fat diet rich in saturated fatty acids (HFD-S, n = 4) and III) high fat diet rich in polyunsaturated fatty acids (HFD-P, n = 4). We performed mass spectrophotometry based quantitative proteomics analysis of isolated spleen by implementing the isobaric tags for relative and absolute quantification (iTRAQ) approach. Mass spectrometry data were analyzed using Proteome Discoverer 2.4 software using the search engine mascot against Mus musculus in SwissProt. 924 proteins are identified in all sets (n = 4) for different dietary effects taken for statistical analysis using Qlucore Omics Explorer software. Only 20 proteins were found to be differentially expressed with a cut-off value of false discovery rate < 0.1 (q-value) when comparing HFD-S and HFD-P but no differentially expressed proteins were found when LFD was compared with HFD-P or HFD-S. The identified proteins and statistical analysis comparing HFD-S and HFD-P diets are available as a supplementary file S1. We identified a subset of proteins that showed an inverse expression pattern between two high fat diets. These differentially expressed proteins were further classified by gene ontology for their role in biological processes and molecular functions. Mass spectrometry raw data are also available via ProteomeXchange with identifier PXD020365.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy