SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svenningsen Åsa Fex) "

Sökning: WFRF:(Svenningsen Åsa Fex)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alm, Henrik, et al. (författare)
  • Exposure to brominated flame retardant PBDE-99 affects cytoskeletal protein expression in the neonatal mouse cerebral cortex
  • 2008
  • Ingår i: Neurotoxicology. - : Elsevier BV. - 0161-813X .- 1872-9711. ; 29:4, s. 628-637
  • Tidskriftsartikel (refereegranskat)abstract
    • Polybrominated diphenyl ethers (PBDEs) are environmental contaminants found in human and animal tissues worldwide. Neonatal exposure to the flame retardant 2,2', 4,4',5-pentabromodiphenyl ether (PBDE-99) disrupts normal brain development in mice, and results in disturbed spontaneous behavior in the adult. The mechanisms underlying the late effects of early exposure are not clear. To gain insight into the initial neurodevelopmental damage inflicted by PBDE-99, we investigated the short-term effects of PBDE-99 on protein expression in the developing cerebral cortex of neonatal mice, and the cytotoxic and apoptotic effects of PBDE-99 in primary cultures of fetal rat cortical cells. We used two-dimensional difference gel electrophoresis (2D-DIGE) to analyze protein samples isolated from the cortex of NMRI mice 24h after exposure to a single oral dose of 12 mg/kg PBDE-99 on post-natal day 10. Protein resolution was enhanced by sample pre-fractionation. In the cell model, we determined cell viability using the trypan blue exclusion assay, and apoptosis using immunocytochemical detection of cleaved caspase-3. We determined the identity of 111 differentially expressed proteins, 32 (29%) of which are known to be cytoskeleton-related. Similar to previous findings in the striatum, we found elevated levels of the neuron growth-associated protein Gap43 in the cortex. In cultured cortical cells, a high concentration of PBDE-99 (30 microM) induced cell death without any apparent increase in caspase-3 activity. These results indicate that the permanent neurological damage induced by PBDE-99 during the brain growth spurt involve detrimental effects on cytoskeletal regulation and neuronal maturation in the developing cerebral cortex.
  •  
2.
  • Alm, Henrik, et al. (författare)
  • In Vitro Neurotoxicity of PBDE-99 : Immediate and Concentration-Dependent Effects on Protein Expression in Cerebral Cortex Cells
  • 2010
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 9:3, s. 1226-1235
  • Tidskriftsartikel (refereegranskat)abstract
    • Polybrominated diphenyl ethers (PBDEs) are commonly used flame retardants in various consumer products. Pre- and postnatal exposure to congeners of PBDEs disrupts normal brain development in rodents. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to analyze concentration-dependent differences in protein expression in cultured cortical cells isolated from rat fetuses (GD 21) after 24 h exposure to PBDE-99 (3, 10, or 30 muM). Changes on a post-translational level were studied using a 1 h exposure to 30 muM PBDE-99. The effects of 24 h exposure to 3 and 30 muM PBDE-99 on mRNA levels were measured using oligonucleotide microarrays. A total of 62, 46, and 443 proteins were differentially expressed compared to controls after 24 h of exposure to 3, 10, and 30 muM PDBE-99, respectively. Of these, 48, 43, and 238 proteins were successfully identified, respectively. We propose that the biological effects of low-concentration PBDE-99 exposure are fundamentally different than effects of high-concentration exposure. Low-dose PBDE-99 exposure induced marked effects on cytoskeletal proteins, which was not correlated to cytotoxicity or major morphological effects, suggesting that other more regulatory aspects of cytoskeletal functions may be affected. Interestingly, 0.3 and 3 muM, but not 10 or 30 muM increased the expression of phosphorylated (active) Gap43, perhaps reflecting effects on neurite extension processes.
  •  
3.
  • Attoff, Kristina, 1985- (författare)
  • Cell models for evaluation of adult and developmental neurotoxicity : Focus on acrylamide
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is aimed at summarizing some of the alternative in vitro methods and models that have been used to study both adult and developmental neurotoxicity (DNT), and also to pinpoint some of the important aspects of using alternative in vitro methods. The aim of the papers included in this thesis was to challenge the hypothesis that neurotoxicity and DNT of chemicals can be studied using robust endpoints for proliferation and neural differentiation, such as neurite outgrowth, mRNA expression and protein expression, in two different cell lines. The aim was also to characterize the two cell lines and identify marker genes important for differentiation and to evaluate if these markers could be used as indicators for DNT. The hypothesis being that any chemical that change the expression of important genes for the developmental process could possibly result in DNT for the cells. The current developmental neurotoxicity testing guidelines, using animal models, are time consuming, expensive, ethically questionable and have relatively low sensitivity. Because of this, there has been a paradigm shift towards developing and using alternative methods capable of testing and screening large number of substances. The next generation of developmental neurotoxicity testing is predicted to consist of both in silico and in vitro testing that have to be used in a combined fashion so that it will generate a more rapid and efficient toxicity testing. The idea is to use a battery of refined endpoint studies that identify the specific toxicity of a compound, discriminate between different neural subpopulations and the different stages of neural differentiation. The use of transcriptomic approaches has been suggested as an example of such an endpoint. In this thesis we have evaluated the human neuroblastoma cell line SH-SY5Y and the murine neural progenitor cell line C17.2 in their ability to detect neurotoxic and developmental neurotoxic compounds. We have evaluated this by using functional endpoints, such as neurite outgrowth, cell membrane potential and phenotype ratios. We have also studied the effect of selected chemicals on the levels of mRNA markers specific for different neural cell populations or for neural differentiation in general. We have performed whole genome gene expression on the two cell lines during differentiation and identified and selected a limited number of genes that have been evaluated for their ability to detect developmental neurotoxicity. Both cell lines showed that they have the capability to identify neurotoxic and developmental neurotoxic compounds and could possibly serve as an addition to the testing battery of neurotoxicity in the future. Some of the focus of this thesis has been directed towards the neurodevelopmental effects of the neurotoxic compound acrylamide. Most people get exposed to acrylamide through food consumption and from environmental pollution. Since acrylamide crosses the placental barrier, it creates a risk for developmental consequences. We found that acrylamide affected both cell proliferation and differentiation in both cell lines. Acrylamide affected both neuronal and the glial phenotypes in the C17.2 cell line. We also revealed that acrylamide attenuated neural differentiation at concentrations that were seven orders of magnitude lower than the estimated plasma concentration of free acrylamide in the fetus. Low concentrations of acrylamide altered the gene expression of several genes involved in the retinoic acid signaling as well as the CREB signaling pathways during retinoic acid driven differentiation in the SH-SY5Y cells. Since sub-micromolar concentrations seem to inhibit the differentiation process in both cell lines, developmental neurotoxicity induced by daily intake of acrylamide is a matter of concern. We found that the C17.2 cell line could function as a good model for detecting acute neurotoxicity by evaluating the cell membrane potential of the cells in combination with gene expression of neural and stress marker genes.
  •  
4.
  • Brännvall, Karin, et al. (författare)
  • Environmental cues from CNS, PNS, and ENS cells regulate CNS progenitor differentiation
  • 2008
  • Ingår i: NeuroReport. - 0959-4965 .- 1473-558X. ; 19:13, s. 1283-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular origin and environmental cues regulate stem cell fate determination. Neuroepithelial stem cells form the central nervous system (CNS), whereas neural crest stem cells generate the peripheral (PNS) and enteric nervous system (ENS). CNS neural stem/progenitor cell (NSPC) fate determination was investigated in combination with dissociated cultures or conditioned media from CNS, PNS, or ENS. Cells or media from ENS or PNS cultures efficiently promoted NSPC differentiation into neurons, glia, and smooth muscle cells with a similar morphology as the feeder culture. Together with CNS cells or its conditioned medium, NSPC differentiation was partly inhibited and cells remained immature. Here, we demonstrate that secreted factors from the environment can influence CNS progenitor cells to choose a PNS-like cell fate.
  •  
5.
  • Corell, Mikael, et al. (författare)
  • GABA and its B-receptor are present at the node of Ranvier in a small population of sensory fibers, implicating a role in myelination
  • 2015
  • Ingår i: Journal of Neuroscience Research. - : Wiley. - 0360-4012 .- 1097-4547. ; 93:2, s. 285-295
  • Tidskriftsartikel (refereegranskat)abstract
    • The γ-aminobutyric acid (GABA) type B receptor has been implicated in glial cell development in the peripheral nervous system (PNS), although the exact function of GABA signaling is not known. To investigate GABA and its B receptor in PNS development and degeneration, we studied the expression of the GABAB receptor, GABA, and glutamic acid decarboxylase GAD65/67 in both development and injury in fetal dissociated dorsal root ganglia (DRG) cell cultures and in the rat sciatic nerve. We found that GABA, GAD65/67, and the GABAB receptor were expressed in premyelinating and nonmyelinating Schwann cells throughout development and after injury. A small population of myelinated sensory fibers displayed all of these molecules at the node of Ranvier, indicating a role in axon-glia communication. Functional studies using GABAB receptor agonists and antagonists were performed in fetal DRG primary cultures to study the function of this receptor during development. The results show that GABA, via its B receptor, is involved in the myelination process but not in Schwann cell proliferation. The data from adult nerves suggest additional roles in axon-glia communication after injury.
  •  
6.
  • Corell, Mikael (författare)
  • Neuron-glial Interaction in the Developing Peripheral Nervous System
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The nervous system, including the brain, is the most sophisticated organ in the mammalian body. In such a complex network, neuron-glial interaction is essential and controls most developmental processes, such as stem cell fate determination, migration, differentiation, synapse formation, ensheathment and myelination. Many of these events are critical for the developmental process and small errors can lead to growth retardation, malformation or disease. The understanding of the normal progress of nervous system development is fundamental and will help the discovery of new treatments for disease. This thesis discusses three types of neuron-glia interactions at different developmental stages; neural stem/progenitor cell (NSPC) differentiation, building and maintaining the structure of the sciatic nerve, and myelin formation. In Paper I we show that NSPCs, based upon their morphology and expression of specific protein markers, have the capacity to differentiate into cells of either the peripheral nervous system (PNS) or enteric nervous system (ENS) when grown with PNS or ENS primary cell cultures, or fed with conditioned medium from these. This indicates that soluble factors secreted from the PNS or ENS cultures are important for stem cell differentiation and fate determination. The adhesion protein neuronal cadherin (N-cadherin) is implicated in migration, differentiation and nerve outgrowth in the developing PNS. In Paper II N-cadherin was exclusively found in ensheathing glia (nonmyelinating Schwann cells, satellite cells and enteric glia) in contact with each other or with axons. Functional blocking of N-cadherin in dissociated fetal dorsal root ganglia (DRG) cultures led to a decrease in attachment between Schwann cells. N-cadherin-mediated adhesion of nonmyelinating Schwann cells may be important in encapsulating thin calibre axons and provide support to myelinating Schwann cells. In Paper III the inhibitory gamma aminobutyric acid (GABA) and GABAB receptors were studied in the Schwann cell of the adult sciatic nerve and DRG cultures. GABAB receptors were primarily expressed in nonmyelinating Schwann cells and protein levels decreased during development and myelination. Blocking the GABAB receptor in long-term DRG cultures led to decreased levels of mRNA markers for myelin. These results indicate that the GABA and GABAB receptors may be involved in Schwann cell myelination.
  •  
7.
  • Corell, Mikael, et al. (författare)
  • Spatiotemporal Distribution and Function of N-Cadherin in Postnatal Schwann Cells : A Matter of Adhesion?
  • 2010
  • Ingår i: Journal of Neuroscience Research. - : Wiley. - 0360-4012 .- 1097-4547. ; 88:11, s. 2338-2349
  • Tidskriftsartikel (refereegranskat)abstract
    • During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells. In this study, we investigated the distribution of N-cadherin in the developing postnatal and adult rat peripheral nervous system. N-cadherin was found primarily in ensheathing glia throughout development, concentrated at neuron glial or glial glial contacts of the sciatic nerve, dorsal root ganglia (DRG), and myenteric plexi. In the sciatic nerve, N-cadherin decreases with age and progress of myelination. In adult animals, N-cadherin was found exclusively in nonmyelinating Schwann cells. The distribution of N-cadherin in developing E17 DRG primary cultures is similar to what was observed in vivo. Functional studies of N-cadherin in these cultures, using the antagonist peptide INPISGQ, show a disruption of the attachment between Schwann cells, but no interference in the initial or long-term contact between Schwann cells and axons. We suggest that N-cadherin acts primarily in the adhesion between glial cells during postnatal development. It may form adherents/junctions between nonmyelinating glia, which contribute to the stable tubular structure encapsulating thin caliber axons and thus stabilize the nerve structure as a whole.
  •  
8.
  •  
9.
  • Emanuelsson, Ida, et al. (författare)
  • Expression and regulation of CYP17A1 and 3β-hydroxysteroid dehydrogenase in cells of the nervous system : potential effects of vitamin D on brain steroidogenesis
  • 2018
  • Ingår i: Neurochemistry International. - : Elsevier BV. - 0197-0186 .- 1872-9754. ; 113, s. 46-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Steroids are reported to have diverse functions in the nervous system. Enzymatic production of steroid hormones has been reported in different cell types, including astrocytes and neurons. However, the information on some of the steroidogenic enzymes involved is insufficient in many respects. Contradictory results have been reported concerning the relative importance of different cell types in the nervous system for expression of CYP17A1 and 3b-hydroxysteroid dehydrogenase (3b-HSD). 3b-HSD is important in all basic steroidogenic pathways and CYP17A1 is required to form sex hormones. In the current investigation we studied the expression of these enzymes in cultured primary rat astrocytes, in neuron-enriched cells from rat cerebral cortex and in human neuroblastoma SH-SY5Y cells, a cell line often used as an in vitro model of neuronal function and differentiation. As part of this study we also examined potential effects on CYP17A1 and 3b-HSD by vitamin D, a compound previously shown to have regulatory effects in steroid hormone-producing cells outside the brain. The results of our study indicate that astrocytes are a major site for expression of 3b-HSD whereas expression of CYP17A1 is found in both astrocytes and neurons. The current data suggest that neurons, contrary to some previous reports, are not involved in 3b-HSD reactions. Previous studies have shown that vitamin D can influence gene expression and hormone production by steroidogenic enzymes in some cells. We found that vitamin D suppressed CYP17A1-mediated activity by 20% in SH-SY5Ycells and astrocytes. Suppression of CYP17A1 mRNA levels was considerably stronger, about 50% in SH-SY5Y cells and 75% in astrocytes. In astrocytes 3b-HSD was also suppressed by vitamin D, about 20% at the enzyme activity level and 60% at the mRNA level. These data suggest that vitamin D-mediated regulation of CYP17A1 and 3b-HSD, particularly on the transcriptional level, may play a role in the nervous system.
  •  
10.
  • Fex Svenningsen, Åsa, et al. (författare)
  • Macrophage migration inhibitory factor (MIF) modulates trophic signaling through interaction with serine protease HTRA1
  • 2017
  • Ingår i: Cellular and Molecular Life Sciences (CMLS). - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071. ; 24, s. 4561-4572
  • Tidskriftsartikel (refereegranskat)abstract
    • Macrophage migration inhibitory factor (MIF), a small conserved protein, is abundant in the immune- and central nervous system (CNS). MIF has several receptors and binding partners that can modulate its action on a cellular level. It is upregulated in neurodegenerative diseases and cancer although its function is far from clear. Here, we report the finding of a new binding partner to MIF, the serine protease HTRA1. This enzyme cleaves several growth factors, extracellular matrix molecules and is implicated in some of the same diseases as MIF. We show that the function of the binding between MIF and HTRA1 is to inhibit the proteolytic activity of HTRA1, modulating the availability of molecules that can change cell growth and differentiation. MIF is therefore the first endogenous inhibitor ever found for HTRA1. It was found that both molecules were present in astrocytes and that the functional binding has the ability to modulate astrocytic activities important in development and disease of the CNS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
Typ av publikation
tidskriftsartikel (16)
doktorsavhandling (5)
konferensbidrag (3)
annan publikation (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Fex-Svenningsen, Åsa (15)
Wu, Zhigang (4)
Benedikz, Eirikur (3)
Schiöth, Helgi B. (2)
Kultima, Kim (2)
Fredriksson, Robert (2)
visa fler...
Hjort, Klas (2)
Hjort, Klas, 1964- (2)
Andrén, Per E. (2)
Aldskogius, Håkan (2)
Nilsson, Anna (2)
Alm, Henrik (2)
Scholz, Birger (2)
Dencker, Lennart (2)
Stigson, Michael (2)
Norlin, Maria (2)
Pickering, Chris (2)
Andersson, Malin (2)
Forsby, Anna, Docent (2)
Dyachok, Oleg (1)
Abou-Hachem, Maher (1)
Nordberg Karlsson, E ... (1)
Holst, Olle (1)
Bakalkin, Georgy (1)
Lycke, Jan, 1956 (1)
Mulder, Jan (1)
Hreggvidsson, Gudmun ... (1)
Rask, Lars (1)
Druid, Henrik (1)
Yakovleva, Tatiana (1)
Alkass, Kanar (1)
Lundqvist, Johan (1)
Axelsson, Markus, 19 ... (1)
Bergman, Åke (1)
Savitski, Mikhail M (1)
Almokhtar, Mokhtar (1)
Wikvall, Kjell (1)
Novakova, Lenka, 198 ... (1)
Kullander, Klas (1)
Nylander, Erik (1)
Kullander, Klas, Pro ... (1)
Kilimann, Manfred W. (1)
Watanabe, Hiroyuki (1)
Forsberg-Nilsson, Ka ... (1)
Attoff, Kristina, 19 ... (1)
Fex-Svenningsen, Åsa ... (1)
Zhang, Mengliang (1)
Larsson, Mårten (1)
Dahl, Niklas, Profes ... (1)
Raininko, Raili, pro ... (1)
visa färre...
Lärosäte
Uppsala universitet (20)
Stockholms universitet (3)
Lunds universitet (2)
Göteborgs universitet (1)
Örebro universitet (1)
Karolinska Institutet (1)
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (7)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy