SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svensson Camilla I) "

Sökning: WFRF:(Svensson Camilla I)

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ascani, Angelo, et al. (författare)
  • The role of B cells in immune cell activation in polycystic ovary syndrome.
  • 2023
  • Ingår i: eLife. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations in B cell numbers are associated with polycystic ovary syndrome (PCOS) through unknown mechanisms. Here, we demonstrate that B cells are not central mediators of PCOS pathology and that their frequencies are altered as a direct effect of androgen receptor activation. Hyperandrogenic women with PCOS have increased frequencies of age-associated double-negative B memory cells and increased levels of circulating immunoglobulin M (IgM). However, the transfer of serum IgG from women into wild-type female mice induces only an increase in body weight. Furthermore, RAG1 knockout mice, which lack mature T- and B cells, fail to develop any PCOS-like phenotype. In wild-type mice, co-treatment with flutamide, an androgen receptor antagonist, prevents not only the development of a PCOS-like phenotype but also alterations of B cell frequencies induced by dihydrotestosterone (DHT). Finally, B cell-deficient mice, when exposed to DHT, are not protected from developing a PCOS-like phenotype. These results urge further studies on B cell functions and their effects on autoimmune comorbidities highly prevalent among women with PCOS.
  •  
2.
  • Krishnamurthy, Akilan, et al. (författare)
  • Combination of Two Monoclonal Anti–Citrullinated Protein Antibodies Induced Tenosynovitis, Pain, and Bone Loss in Mice in a Peptidyl Arginine Deiminase-4–Dependent Manner
  • 2023
  • Ingår i: Arthritis & Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 75:2, s. 164-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. The appearance of anti–citrullinated protein antibodies (ACPAs) in the circulation represents a major risk factor for developing rheumatoid arthritis (RA). Patient-derived ACPAs have been shown to induce pain and bone erosion in mice, suggesting an active role in the pathogenicity of RA. We undertook this study to investigate whether ACPAs can induce tenosynovitis, an early sign of RA, in addition to pain and bone loss and whether these symptoms are dependent on peptidyl arginine deiminase 4 (PAD4).Methods. Monoclonal ACPAs generated from plasma cells of RA patients were transferred to wild-type and PAD4-deficient mice. Pain-like behavior and macroscopic inflammation were monitored for a period of 4 weeks, followed by the analyses of tenosynovitis in the ankle joints using magnetic resonance imaging (MRI) and bone microarchitecture in the tibia using an X-ray microscope. Microscopic changes in the tendon sheath were analyzed in decalcified ankle joint sections.Results. The combination of 2 monoclonal ACPAs (1325:04C03 and 1325:01B09) induced long-lasting pain-like behavior and trabecular bone loss in mice. Although no synovitis was observed macroscopically, we detected tenosynovitis in the ACPA-injected mice by MRI. Microscopic analyses of the joints revealed a cellular hyperplasia and a consequent enlargement of the tendon sheath in the ACPA-treated group. In PAD4−/− mice, the effects of ACPAs on pain-like behavior, tenosynovitis, and bone loss were significantly reduced.Conclusion. Monoclonal ACPAs can induce tenosynovitis in addition to pain and bone loss via mechanisms dependent on PAD4-mediated citrullination.
  •  
3.
  • Agalave, Nilesh M., et al. (författare)
  • Sex-dependent role of microglia in disulfide high mobility group box 1 protein-mediated mechanical hypersensitivity
  • 2021
  • Ingår i: Pain. - : Lippincott Williams & Wilkins. - 0304-3959 .- 1872-6623. ; 162:2, s. 446-458
  • Tidskriftsartikel (refereegranskat)abstract
    • High mobility group box 1 protein (HMGB1) is increasingly regarded as an important player in the spinal regulation of chronic pain. Although it has been reported that HMGB1 induces spinal glial activation in a Toll-like receptor (TLR)4-dependent fashion, the aspect of sexual dimorphisms has not been thoroughly addressed. Here, we examined whether the action of TLR4-activating, partially reduced disulfide HMGB1 on microglia induces nociceptive behaviors in a sex-dependent manner. We found disulfide HMGB1 to equally increase microglial Iba1 immunoreactivity in lumbar spinal dorsal horn in male and female mice, but evoke higher cytokine and chemokine expression in primary microglial culture derived from males compared to females. Interestingly, TLR4 ablation in myeloid-derived cells, which include microglia, only protected male mice from developing HMGB1-induced mechanical hypersensitivity. Spinal administration of the glial inhibitor, minocycline, with disulfide HMGB1 also prevented pain-like behavior in male mice. To further explore sex difference, we examined the global spinal protein expression using liquid chromatography-mass spectrometry and found several antinociceptive and anti-inflammatory proteins to be upregulated in only male mice subjected to minocycline. One of the proteins elevated, alpha-1-antitrypsin, partially protected males but not females from developing HMGB1-induced pain. Targeting downstream proteins of alpha-1-antitrypsin failed to produce robust sex differences in pain-like behavior, suggesting that several proteins identified by liquid chromatography-mass spectrometry are required to modulate the effects. Taken together, the current study highlights the importance of mapping sex dimorphisms in pain mechanisms and point to processes potentially involved in the spinal antinociceptive effect of microglial inhibition in male mice.
  •  
4.
  • Agalave, Nilesh M, et al. (författare)
  • Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis.
  • 2014
  • Ingår i: Pain. - : Lippincott Williams & Wilkins. - 0304-3959 .- 1872-6623. ; 155:9, s. 1802-1813
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular high mobility group box-1 protein (HMGB1) plays important roles in the pathogenesis of nerve injury- and cancer-induced pain. However, the involvement of spinal HMGB1 in arthritis-induced pain has not been examined previously and is the focus of this study. Immunohistochemistry showed that HMGB1 is expressed in neurons and glial cells in the spinal cord. Subsequent to induction of collagen antibody-induced arthritis (CAIA), Hmgb1 mRNA and extranuclear protein levels were significantly increased in the lumbar spinal cord. Intrathecal (i.t.) injection of a neutralizing anti-HMGB1 monoclonal antibody or recombinant HMGB1 box A peptide (Abox), which each prevent extracellular HMGB1 activities, reversed CAIA-induced mechanical hypersensitivity. This occurred during ongoing joint inflammation as well as during the postinflammatory phase, indicating that spinal HMGB1 has an important function in nociception persisting beyond episodes of joint inflammation. Importantly, only HMGB1 in its partially oxidized isoform (disulfide HMGB1), which activates toll-like receptor 4 (TLR4), but not in its fully reduced or fully oxidized isoforms, evoked mechanical hypersensitivity upon i.t. injection. Interestingly, although both male and female mice developed mechanical hypersensitivity in response to i.t. HMGB1, female mice recovered faster. Furthermore, the pro-nociceptive effect of i.t. injection of HMGB1 persisted in Tlr2- and Rage-, but was absent in Tlr4-deficient mice. The same pattern was observed for HMGB1-induced spinal microglia and astrocyte activation and cytokine induction. These results demonstrate that spinal HMGB1 contributes to nociceptive signal transmission via activation of TLR4 and point to disulfide HMGB1 inhibition as a potential therapeutic strategy in treatment of chronic inflammatory pain.
  •  
5.
  • Ahmed, Aisha S, et al. (författare)
  • NF-κB-Associated Pain-Related Neuropeptide Expression in Patients with Degenerative Disc Disease.
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) has been highlighted in mechanisms underlying inflammatory and neuropathic pain processes. The present study was designed to investigate whether NF-κB signaling is associated with pain-related neuropeptide expression in patients with chronic back pain related to degenerative disc disease (DDD). Intervertebral disc (IVD) tissues were collected from forty DDD patients undergoing disc replacement or fusion surgery, and from eighteen postmortem (PM) control subjects. RELA, NFKB1, CGRP, TAC1, TRPV1, and MMP-3 gene expression were analyzed by RT-qPCR, while NF-κB subunit RelA and NF-κB1⁻DNA binding in nuclear extracts and calcitonin gene related peptide (CGRP), substance P (SP), and transient receptor potential, subfamily V, member 1 (TRPV1) protein levels in cytosolic extracts of tissues were assessed by enzyme-linked immunosorbent assay (ELISA). An upregulated NF-κB1⁻DNA binding, and higher CGRP and TRPV1 protein levels were observed in DDD patients compared to PM controls. In DDD patients, NF-κB1⁻DNA binding was positively correlated with nuclear RelA levels. Moreover, NF-κB1⁻DNA binding was positively associated with TRPV1 and MMP-3 gene and SP and TRPV1 protein expression in DDD patients. Our results indicate that the expression of SP and TRPV1 in IVD tissues was associated with NF-κB activation. Moreover, NF-κB may be involved in the generation or maintenance of peripheral pain mechanisms by the regulation of pain-related neuropeptide expression in DDD patients.
  •  
6.
  • Ainsworth, Richard I, et al. (författare)
  • Systems-biology analysis of rheumatoid arthritis fibroblast-like synoviocytes implicates cell line-specific transcription factor function.
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Rheumatoid arthritis (RA) is an immune-mediated disease affecting diarthrodial joints that remains an unmet medical need despite improved therapy. This limitation likely reflects the diversity of pathogenic pathways in RA, with individual patients demonstrating variable responses to targeted therapies. Better understanding of RA pathogenesis would be aided by a more complete characterization of the disease. To tackle this challenge, we develop and apply a systems biology approach to identify important transcription factors (TFs) in individual RA fibroblast-like synoviocyte (FLS) cell lines by integrating transcriptomic and epigenomic information. Based on the relative importance of the identified TFs, we stratify the RA FLS cell lines into two subtypes with distinct phenotypes and predicted activepathways. We biologically validate these predictions for the top subtype-specific TF RARα and demonstrate differential regulation of TGFβ signaling in the two subtypes. This study characterizes clusters of RA cell lines with distinctive TF biology by integrating transcriptomic and epigenomic data, which could pave the way towards a greater understanding of disease heterogeneity.
  •  
7.
  • Bersellini Farinotti, Alex, et al. (författare)
  • Cartilage-binding antibodies induce pain through immune complex-mediated activation of neurons
  • 2019
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 216:8, s. 1904-1924
  • Tidskriftsartikel (refereegranskat)abstract
    • Rheumatoid arthritis-associated joint pain is frequently observed independent of disease activity, suggesting unidentified pain mechanisms. We demonstrate that antibodies binding to cartilage, specific for collagen type II (CII) or cartilage oligomeric matrix protein (COMP), elicit mechanical hypersensitivity in mice, uncoupled from visual, histological and molecular indications of inflammation. Cartilage antibody-induced pain-like behavior does not depend on complement activation or joint inflammation, but instead on tissue antigen recognition and local immune complex (IC) formation. smFISH and IHC suggest that neuronal Fcgr1 and Fcgr2b mRNA are transported to peripheral ends of primary afferents. CII-ICs directly activate cultured WT but not FcRγ chain-deficient DRG neurons. In line with this observation, CII-IC does not induce mechanical hypersensitivity in FcRγ chain-deficient mice. Furthermore, injection of CII antibodies does not generate pain-like behavior in FcRγ chain-deficient mice or mice lacking activating FcγRs in neurons. In summary, this study defines functional coupling between autoantibodies and pain transmission that may facilitate the development of new disease-relevant pain therapeutics.
  •  
8.
  • Bonagas, Nadilly, et al. (författare)
  • Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress
  • 2022
  • Ingår i: NATURE CANCER. - : Springer Science and Business Media LLC. - 2662-1347. ; 3:2, s. 156-
  • Tidskriftsartikel (refereegranskat)abstract
    • The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors. Helleday and colleagues describe a nanomolar MTHFD2 inhibitor that causes replication stress and DNA damage accumulation in cancer cells via thymidine depletion, demonstrating a potential therapeutic strategy in AML tumors in vivo.
  •  
9.
  • Emami Khoonsari, Payam, et al. (författare)
  • Systematic Analysis of the Cerebrospinal Fluid Proteome of Fibromyalgia patients
  • 2019
  • Ingår i: Journal of Proteomics. - : Elsevier BV. - 1874-3919 .- 1876-7737. ; , s. 35-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibromyalgia (FM) is a syndrome characterized by widespread muscular pain, fatigue and functional symptoms, which is known to be difficult to diagnose as the various symptoms overlap with many other conditions. Currently, there are no biomarkers for FM, and the diagnosis is made subjectively by the clinicians. We have performed shotgun proteomics on cerebrospinal fluid (CSF) from FM patients and non-pain controls to find potential biomarker candidates for this syndrome. Based on our multivariate and univariate analyses, we found that the relative differences in the CSF proteome between FM patients and controls were moderate. Four proteins, important to discriminate FM patients from non-pain controls, were found: Apolipoprotein C-III, Galectin-3-binding protein, Malate dehydrogenase cytoplasmic and the neuropeptide precursor protein ProSAAS. These proteins are involved in lipoprotein lipase (LPL) activity, inflammatory signaling, energy metabolism and neuropeptide signaling.
  •  
10.
  • Emami Khoonsari, Payam, et al. (författare)
  • The human CSF pain proteome
  • 2019
  • Ingår i: Journal of Proteomics. - : ELSEVIER SCIENCE BV. - 1874-3919 .- 1876-7737. ; 190, s. 67-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic pain represents one of the major medical challenges in the 21st century, affecting > 1.5 billion of the world population. Overlapping and heterogenous symptoms of various chronic pain conditions complicate their diagnosis, emphasizing the need for more specific biomarkers to improve the diagnosis and understand the disease mechanisms. We have here investigated proteins found in human CSF with respect to known "pain" genes and in a cohort of patients with dysfunctional pain (fibromyalgia, FM), inflammatory pain (rheumatoid arthritis patients, RA) and non-pain controls utilized semi-quantitative proteomics using mass spectrometry (MS) to explore quantitative differences between these cohorts of patients. We found that "pain proteins" detected in CSF using MS are typically related to synaptic transmission, inflammatory responses, neuropeptide signaling- and hormonal activity. In addition, we found ten proteins potentially associated with chronic pain in FM and RA: neural cell adhesion molecule L1, complement C4-A, lysozyme C, receptor-type tyrosine-protein phosphatase zeta, apolipoprotein D, alpha-1-antichymotrypsin, granulins, calcium/calmodulin-dependent protein kinase type II subunit alpha, mast/stem cell growth factor receptor Kit, prolow-density lipoprotein receptor-related protein 1. These proteins might be of importance for understanding the mechanisms of dysfunctional/inflammatory chronic pain and also for use as potential biomarkers. Significance: Chronic pain is a common disease and it poses a large burden on worldwide health. Fibromyalgia (FM) is a heterogeneous disease of unknown etiology characterized by chronic widespread pain (CWP). The diagnosis and treatment of FM is based on the analysis of clinical assessments and no measurable biomarkers are available. Cerebrospinal fluid (CSF) has been historically considered as a rich source of biomarkers for diseases of nervous system including chronic pain. Here, we explore CSF proteome of FM patients utilizing mass spectrometry based quantitative proteomics method combined with multivariate data analysis in order to monitor the dynamics of the CSF proteome. Our findings in this exploratory study support notable presence of pain related proteins in CSF yet with specific domains including inflammatory responses, neuropeptide signaling- and hormonal activity. We have investigated molecular functions of significantly altered proteins and demonstrate presence of 176 known pain related proteins in CSF. In addition, we found ten proteins potentially associated with pain in FM and RA: neural cell adhesion molecule L1, complement C4-A, lysozyme C, receptor-type tyrosine-protein phosphatase zeta, apolipoprotein D, alpha-1-antichymotrypsin, granulins, calcium/calmodulindependent protein kinase type II subunit alpha, mast/stem cell growth factor receptor Kit, prolow-density lipoprotein receptor-related protein 1. These proteins are novel in the context of FM but are known to be involved in pain mechanisms including inflammatory response and signal transduction. These results should be of clear significance and interest for researchers and clinicians working in the field of pain utilizing human CSF and MS based proteomics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29
Typ av publikation
tidskriftsartikel (29)
Typ av innehåll
refereegranskat (29)
Författare/redaktör
Svensson, Camilla, I (26)
Sandor, Katalin (11)
Kultima, Kim (9)
Emami Khoonsari, Pay ... (4)
Su, Jie (4)
Palada, Vinko (4)
visa fler...
Baharpoor, Azar (4)
Lampa, Jon (3)
Hökfelt, Tomas (2)
Catrina, Anca I (2)
Klareskog, Lars (2)
Agalave, Nilesh M. (2)
Farinotti, Alex Bers ... (2)
Nomura, Yuki (2)
Abdelmoaty, Sally (2)
Andersson, Magnus (1)
Arvidsson, Per I. (1)
Ängeby-Möller, Krist ... (1)
Gordh, Torsten (1)
Eriksson, Anders (1)
Henriksson, Martin (1)
Helleday, Thomas (1)
Abdurakhmanov, Eldar ... (1)
Landén, Mikael, 1966 (1)
Sellgren, Carl M (1)
Andersson, Ulf (1)
Zhang, Kai (1)
Freyhult, Eva, 1979- (1)
Hart, David A (1)
Zubarev, Roman A (1)
Risal, Sanjiv (1)
Ohlsson, Claes, 1965 (1)
Barde, Swapnali (1)
Hokfelt, Tomas (1)
Svensson, Camilla (1)
Bhat, Maria (1)
Khademi, Mohsen (1)
Erhardt, Sophie (1)
Agalave, Nilesh Moha ... (1)
Rudjito, Resti (1)
Szabo-Pardi, Thomas ... (1)
Urbina, Carlos Morad ... (1)
Price, Theodore J. (1)
Harris, Helena Erlan ... (1)
Burton, Michael D. (1)
Larsson, Max (1)
Lundbäck, Peter (1)
Palmblad, Karin (1)
Harris, Helena (1)
Harris, Robert A (1)
visa färre...
Lärosäte
Karolinska Institutet (28)
Uppsala universitet (20)
Göteborgs universitet (5)
Stockholms universitet (3)
Kungliga Tekniska Högskolan (2)
Lunds universitet (2)
visa fler...
Högskolan i Halmstad (1)
Örebro universitet (1)
Linköpings universitet (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (29)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy