SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svensson Torgny H.) "

Sökning: WFRF:(Svensson Torgny H.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Villiers, Sabina H. L., et al. (författare)
  • Nicotine hapten structure, antibody selectivity and effect relationships : Results from a nicotine vaccine screening procedure
  • 2010
  • Ingår i: Vaccine. - : Elsevier BV. - 0264-410X .- 1873-2518. ; 28:10, s. 2161-2168
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present study was to synthesise and screen a set of novel nicotine hapten immunogens used for the treatment of nicotine dependence. In the screening process we studied the amount of antibodies generated and their selectivity, using ELISA techniques, and their effects on nicotine-induced dopamine release in the NAC(shell) of the rat, assessed by in vivo voltammetry. We conclude that even small changes such as the linker attachment on the nicotine molecule as well as the structure of the linker may greatly influence the selectivity of the antibodies and the central neurobiological effects of nicotine that are considered critical for its dependence producing properties. (C) 2010 Elsevier Ltd. All rights reserved.
  •  
2.
  • Frånberg, Olivia, et al. (författare)
  • Asenapine, a novel psychopharmacologic agent : preclinical evidence for clinical effects in schizophrenia.
  • 2008
  • Ingår i: Psychopharmacology. - : Springer Science and Business Media LLC. - 0033-3158 .- 1432-2072. ; 196:3
  • Tidskriftsartikel (refereegranskat)abstract
    • RATIONALE: Asenapine is a novel psychopharmacologic agent being developed for the treatment of schizophrenia and bipolar disorder.MATERIALS AND METHODS: The present study was undertaken to investigate the effects of asenapine using animal models predictive of antipsychotic efficacy (conditioned avoidance response [CAR]) and extrapyramidal side effects (EPS; catalepsy). In parallel, the effects of asenapine on regional dopamine output using in vivo microdialysis in freely moving rats, dopamine output in the core and shell subregions of nucleus accumbens (NAc) using in vivo voltammetry in anesthetized rats, and N-methyl-D: -aspartate (NMDA)-induced currents in pyramidal neurons of the medial prefrontal cortex (mPFC) using the electrophysiological technique intracellular recording in vitro were assessed.RESULTS: Asenapine (0.05-0.2 mg/kg, subcutaneous [s.c.]) induced a dose-dependent suppression of CAR (no escape failures recorded) and did not induce catalepsy. Asenapine (0.05-0.2 mg/kg, s.c.) increased dopamine efflux in both the mPFC and the NAc. Low-dose asenapine (0.01 mg/kg, intravenous [i.v.]) increased dopamine efflux preferentially in the shell compared to the core of NAc, whereas at a higher dose (0.05 mg/kg, i.v.), the difference disappeared. Finally, like clozapine (100 nM), but at a considerably lower concentration (5 nM), asenapine significantly potentiated the NMDA-induced responses in pyramidal cells of the mPFC.CONCLUSIONS: These preclinical data suggest that asenapine may exhibit highly potent antipsychotic activity with very low EPS liability. Its ability to increase both dopaminergic and glutamatergic activity in rat mPFC suggests that asenapine may possess an advantageous effect not only on positive symptoms in patients with schizophrenia, but also on negative and cognitive symptoms.
  •  
3.
  • Björkholm, Carl, et al. (författare)
  • Adjunctive treatment with asenapine augments the escitalopram-induced effects on monoaminergic outflow and glutamatergic neurotransmission in the medial prefrontal cortex of the rat.
  • 2015
  • Ingår i: International Journal of Neuropsychopharmacology. - : Oxford University Press (OUP). - 1461-1457 .- 1469-5111. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Substantial clinical data support the addition of low doses of atypical antipsychotic drugs to selective serotonin reuptake inhibitors (SSRIs) to rapidly enhance the antidepressant effect in treatment-resistant depression. Preclinical studies suggest that this effect is at least partly explained by an increased catecholamine outflow in the medial prefrontal cortex (mPFC).METHODS: In the present study we used in vivo microdialysis in freely moving rats and in vitro intracellular recordings of pyramidal cells of the rat mPFC to investigate the effects of adding the novel atypical antipsychotic drug asenapine to the SSRI escitalopram with regards to monoamine outflow in the mPFC and dopamine outflow in nucleus accumbens as well as glutamatergic transmission in the mPFC.RESULTS: The present study shows that addition of low doses (0.05 and 0.1 mg/kg) of asenapine to escitalopram (5 mg/kg) markedly enhances dopamine, noradrenaline, and serotonin release in the rat mPFC as well as dopamine release in the nucleus accumbens. Moreover, this drug combination facilitated both N-methyl-d-Aspartate (NMDA)- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-induced currents as well as electrically evoked excitatory postsynaptic potentials in pyramidal cells of the rat mPFC.CONCLUSIONS: Our results support the notion that the augmentation of SSRIs by atypical antipsychotic drugs in treatment-resistant depression may, at least in part, be related to enhanced catecholamine output in the prefrontal cortex and that asenapine may be clinically used to achieve this end. In particular, the subsequent activation of the D1 receptor may be of importance for the augmented antidepressant effect, as this mechanism facilitated both NMDA and AMPA receptor-mediated transmission in the mPFC. Our novel observation that the drug combination, like ketamine, facilitates glutamatergic transmission in the mPFC may contribute to explain the rapid and potent antidepressant effect obtained when atypical antipsychotic drugs are added to SSRIs.
  •  
4.
  • Björkholm, Carl, et al. (författare)
  • The novel antipsychotic drug brexpiprazole, alone and in combination with escitalopram, facilitates prefrontal glutamatergic transmission via a dopamine D1 receptor-dependent mechanism.
  • 2017
  • Ingår i: European Neuropsychopharmacology. - : Elsevier. - 0924-977X .- 1873-7862. ; 27, s. 411-417
  • Tidskriftsartikel (refereegranskat)abstract
    • Brexpiprazole (Rexulti(®)), a novel D2/3 receptor (R) partial agonist, was recently approved as monotherapy for schizophrenia, demonstrating effectiveness against both positive and negative symptoms, and also approved as add-on treatment to antidepressant drugs, inducing a potent antidepressant effect with a faster onset compared to an antidepressant given alone. Moreover, brexpiprazole has demonstrated pro-cognitive effects in preclinical studies. To explore whether the observed effects may be mediated via modulation of prefrontal glutamatergic transmission, we investigated the effect of brexpiprazole, alone and in combination with the SSRI escitalopram, on prefrontal glutamatergic transmission using in vitro electrophysiological intracellular recordings of deep layer pyramidal cells of the rat medial prefrontal cortex (mPFC). Nanomolar concentrations of brexpiprazole potentiated NMDAR-induced currents and electrically evoked EPSPs via activation of dopamine D1Rs, in similarity with the effect of the atypical antipsychotic drug clozapine. The effect of an ineffective concentration of brexpiprazole was significantly potentiated by the addition of escitalopram. When combined with escitalopram, brexpiprazole also potentiated AMPAR-mediated transmission, in similarity with the clinically rapid acting antidepressant drug ketamine. The effect on the AMPAR-mediated currents was also D1R dependent. In conclusion, our data propose that brexpiprazole exerts a clozapine-like potentiation of NMDAR-mediated currents in the mPFC, which can explain its efficacy on negative symptoms of schizophrenia and the pro-cognitive effects observed preclinically. Moreover, add-on brexpiprazole to escitalopram also potentiated AMPAR-mediated transmission, which may provide a neurobiological explanation to the faster antidepressant effect of add-on brexpiprazole in major depression.
  •  
5.
  • Jardemark, Kent E, et al. (författare)
  • Differential effects of topiramate on prefrontal glutamatergic transmission when combined with raclopride or clozapine.
  • 2009
  • Ingår i: Synapse. - : Wiley. - 0887-4476 .- 1098-2396. ; 63:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment with topiramate may improve negative symptoms in schizophrenia when added to typical antipsychotic drugs (APDs) but not to clozapine. Both dopaminergic and glutamatergic transmissions in the medial prefrontal cortex (mPFC) are facilitated by atypical, but not typical, APDs, which is thought to improve negative symptoms and cognitive dysfunction in schizophrenia. Our previous results show that topiramate increases prefrontal dopamine (DA) outflow when added to the D(2/3) receptorantagonist raclopride. Here, using intracellular recording in vitro, we investigated the effects of topiramate on glutamatergic neurotransmission in the rat mPFC, both when given alone and in combination with raclopride or clozapine. Neither topiramate nor raclopride alone had any effect on N-methyl-D-aspartate (NMDA)-induced currents in pyramidal cells of the mPFC. However, the combination of topiramate and raclopride facilitated the NMDA-induced currents, and this effect was blocked by the D1 receptor antagonist SCH23390. Topiramate also facilitated the effect of a submaximal, but inhibited the effect of a maximal, concentration of clozapine on these currents. The effect of combined topiramate and a submaximal concentration of clozapine could be blocked by SCH23390. In addition, combined topiramate and raclopride facilitated excitatory postsynaptic potentials. In contrast, topiramate inhibited clozapine's facilitating effect on these potentials. These data may help explain the improvement of negative symptoms when topiramate is used as adjunctive therapy in schizophrenic patients receiving typical APDs, but they may also shed light on the observed deterioration of symptoms when topiramate is added to full dose clozapine.
  •  
6.
  • Jardemark, Kent, et al. (författare)
  • The combination of nicotine with the D2 antagonist raclopride or the weak D4 antagonist L-745,870 generates a clozapine-like facilitation of NMDA receptor-mediated neurotransmission in pyramidal cells of the rat medial prefrontal cortex.
  • 2005
  • Ingår i: International Journal of Neuropsychopharmacology. - 1461-1457 .- 1469-5111. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Clozapine and other atypical, but not typical, antipsychotic drugs (APDs), facilitate both dopaminergic and N-methyl-D-aspartate (NMDA) receptor-mediated glutamatergic transmission in the medial prefrontal cortex (mPFC), which is thought to improve cognition. Switching schizophrenic patients from typical APDs to clozapine may reduce their cigarette smoking. Here, we tested whether nicotine, which facilitates dopamine release, also facilitates NMDA receptor-mediated neurotransmission in the mPFC, when given alone or in combination with a D(2,3) antagonist, raclopride, or a D4 antagonist, 3-(4-[4-chlorophenyl]piperazin-1-yl)methyl-1H-pyrrolo[2,3b]pyridine (L-745,870), using intracellular recording in pyramidal cells of the rat mPFC. Neither nicotine nor raclopride or L-745,870 alone altered NMDA-induced currents in these cells. However, combining nicotine with raclopride or L-745,870 facilitated these currents. Similarly to clozapine the combination of nicotine with raclopride or L-745,870 also markedly potentiated evoked excitatory post-synaptic potentials in the mPFC. Our results support the idea that intense smoking in schizophrenia may represent a form of self-medication with nicotine.
  •  
7.
  • Konradsson, Asa, et al. (författare)
  • Inhibition of the glycine transporter GlyT-1 potentiates the effect of risperidone, but not clozapine, on glutamatergic transmission in the rat medial prefrontal cortex.
  • 2006
  • Ingår i: Synapse. - : Wiley. - 0887-4476 .- 1098-2396. ; 81, s. 104-104
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical studies suggest that the efficacy of the atypical antipsychotic drug (APD) risperidone (but not clozapine) can be augmented by adjunctive treatment with agonists at the glycine site of the N-methyl-D-aspartate (NMDA) receptor. By using intracellular recording, we have investigated the effect of the glycine transporter-1 (GlyT-1) inhibitor N [3-(4'-fluorophenyl)-3-(4'phenylphenylphenoxy) propyl] sarcosine (NFPS) on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex (mPFC), both when given alone and in combination with either risperidone or clozapine. Both risperidone and clozapine enhanced the NMDA-induced currents. The concentration-response curves were biphasic, and the maximal effect of clozapine on the NMDA-induced currents was significantly larger than the maximal effect of risperidone. NFPS also significantly potentiated the NMDA-induced currents, when given alone. Moreover, NFPS (1 microM) augmented the effect of both the maximal (20 nM), and a submaximal (10 nM), concentration of risperidone. In contrast, NFPS did not potentiate either the effect of the maximal (100 nM) or a submaximal (80 nM) concentration of clozapine on the NMDA-induced currents. These data may explain the beneficial clinical results of using glycine reuptake antagonists as adjuvant treatment to risperidone. Our findings also suggest that risperidone and clozapine may affect NMDA receptor-mediated neurotransmission differently in the mPFC.
  •  
8.
  • Malmlof, Torun, et al. (författare)
  • Deuterium substitutions in the L-DOPA molecule improve its anti-akinetic potency without increasing dyskinesias
  • 2010
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886 .- 1090-2430. ; 225:2, s. 408-415
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment of Parkinson's disease is complicated by a high incidence of L-DOPA-induced dyskinesias (LID). Strategies to prevent the development of LID aim at providing more stable dopaminergic stimulation. We have previously shown that deuterium substitutions in the L-DOPA molecule (D3-L-DOPA) yield dopamine that appears more resistant to enzymatic breakdown. We here investigated the effects of D3-L-DOPA on motor performance and development of dyskinesias in a rodent model of Parkinson's disease. Through acute experiments, monitoring rotational behavior, dose effect curves were established for D3-L-DOPA and L-DOPA. The equipotent dose of D3-L-DOPA was estimated to be 60% of L-DOPA. Subsequently, animals were treated with either the equipotent dose of D3-L-DOPA (5 mg/kg), the equivalent dose of D3-L-DOPA (8 mg/kg), L-DOPA (8 mg/kg) or vehicle. The equivalent dose of D3-L-DOPA produced superior anti-akinetic effects compared to L-DOPA in the cylinder test (p<0.05), whereas the equipotent dose of D3-L-DOPA produced an anti-akinetic effect similar to L-DOPA. Dyskinesias developed to the same degree in the groups treated with equivalent doses of D3-L-DOPA and L-DOPA. The equipotent dose of D3-L-DOPA induced fewer dyskinesias than L-DOPA (p<0.05). In conclusion, our study provides evidence for improved potency and reduced side-effects of L-DOPA by deuterium substitutions in the molecule. These results are of clinical interest since the occurrence of LID is related to the total L-DOPA dose administered. D3-L-DOPA may thus represent a novel strategy to reduce the total dose requirement and yet achieve an effective control of parkinsonian symptoms. (C) 2010 Elsevier Inc. All rights reserved.
  •  
9.
  • Malmlöf, Torun, et al. (författare)
  • Deuterium-substituted L-DOPA displays increased behavioral potency and dopamine output in an animal model of Parkinson's disease : comparison with the effects produced by L-DOPA and an MAO-B inhibitor.
  • 2015
  • Ingår i: Journal of neural transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 122:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The most effective treatment of Parkinson's disease (PD) L-DOPA is associated with major side effects, in particular L-DOPA-induced dyskinesia, which motivates development of new treatment strategies. We have previously shown that chronic treatment with a substantially lower dose of deuterium-substituted L-DOPA (D3-L-DOPA), compared with L-DOPA, produced equal anti-parkinsonian effect and reduced dyskinesia in 6-OHDA-lesioned rats. The advantageous effects of D3-L-DOPA are in all probability related to a reduced metabolism of deuterium dopamine by the enzyme monoamine oxidase (MAO). Therefore, a comparative neurochemical analysis was here performed studying the effects of D3-L-DOPA and L-DOPA on dopamine output and metabolism in 6-OHDA-lesioned animals using in vivo microdialysis. The effects produced by D3-L-DOPA and L-DOPA alone were additionally compared with those elicited when the drugs were combined with the MAO-B inhibitor selegiline, used in PD treatment. The different treatment combinations were first evaluated for motor activation; here the increased potency of D3-L-DOPA, as compared to that of L-DOPA, was confirmed and shown to be of equal magnitude as the effect produced by the combination of selegiline/L-DOPA. The extracellular levels of dopamine were also increased following both D3-L-DOPA and selegiline/L-DOPA administration compared with L-DOPA administration. The enhanced behavioral and neurochemical effects produced by D3-L-DOPA and the combination of selegiline/L-DOPA are attributed to decreased metabolism of released dopamine by MAO-B. The similar effect produced by D3-L-DOPA and selegiline/L-DOPA, respectively, is of considerable clinical interest since D3-L-DOPA, previously shown to exhibit a wider therapeutic window, in addition may reduce the need for adjuvant MAO-B inhibitor treatment.
  •  
10.
  • Marcus, Monica M, et al. (författare)
  • Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission.
  • 2010
  • Ingår i: International Journal of Neuropsychopharmacology. - 1461-1457 .- 1469-5111. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Compared to both first- and second-generation antipsychotic drugs (APDs), clozapine shows superior efficacy in treatment-resistant schizophrenia. In contrast to most APDs clozapine possesses high affinity for alpha2-adrenoceptors, and clinical and preclinical studies provide evidence that the alpha2-adrenoceptor antagonist idazoxan enhances the antipsychotic efficacy of typical D2 receptor antagonists as well as olanzapine. Risperidone has lower affinity for alpha2-adrenoceptors than clozapine but higher than most other APDs. Here we examined, in rats, the effects of adding idazoxan to risperidone on antipsychotic effect using the conditioned avoidance response (CAR) test, extrapyramidal side-effect (EPS) liability using the catalepsy test, brain dopamine efflux using in-vivo microdialysis in freely moving animals, cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission using intracellular electrophysiological recording in vitro, and ex-vivo autoradiography to assess the in-vivo alpha2A- and alpha2C-adrenoceptor occupancies by risperidone. The dose of risperidone needed for antipsychotic effect in the CAR test was approximately 0.4 mg/kg, which produced 11% and 17% in-vivo receptor occupancy at alpha2A- and alpha2C-adrenoceptors, respectively. Addition of idazoxan (1.5 mg/kg) to a low dose of risperidone (0.25 mg/kg) enhanced the suppression of CAR, but did not enhance catalepsy. Both cortical dopamine release and NMDA receptor-mediated responses were enhanced. These data propose that the therapeutic effect of risperidone in schizophrenia can be enhanced and its EPS liability reduced by adjunctive treatment with an alpha2-adrenoceptor antagonist, and generally support the notion that the potent alpha2-adrenoceptor antagonistic action of clozapine may be highly important for its unique efficacy in schizophrenia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy