SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svistunenko Dimitri A.) "

Sökning: WFRF:(Svistunenko Dimitri A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cooper, Chris E., et al. (författare)
  • Haptoglobin Binding Stabilizes Hemoglobin Ferryl Iron and the Globin Radical on Tyrosine beta 145
  • 2013
  • Ingår i: Antioxidants & Redox Signaling. - 1557-7716. ; 18:17, s. 2264-2273
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Hemoglobin (Hb) becomes toxic when released from the erythrocyte. The acute phase protein haptoglobin (Hp) binds avidly to Hb and decreases oxidative damage to Hb itself and to the surrounding proteins and lipids. However, the molecular mechanism underpinning Hp protection is to date unclear. The aim of this study was to use electron paramagnetic resonance (EPR) spectroscopy, stopped flow optical spectrophotometry, and site-directed mutagenesis to explore the mechanism and specifically the role of specific tyrosine residues in this protection. Results: Following peroxide challenge Hb produces reactive oxidative intermediates in the form of ferryl heme and globin free radicals. Hp binding increases the steady state level of ferryl formation during Hb-catalyzed lipid peroxidation, while at the same time dramatically inhibiting the overall reaction rate. This enhanced ferryl stability is also seen in the absence of lipids and in the presence of external reductants. Hp binding is not accompanied by a decrease in the pK of ferryl protonation; the protonated ferryl species still forms, but is intrinsically less reactive. Ferryl stabilization is accompanied by a significant increase in the concentration of the peroxide-induced tyrosine free radical. EPR spectral parameters and mutagenesis studies suggest that this radical is located on tyrosine 145, the penultimate C-terminal amino acid on the beta Hb subunit. Innovation: Hp binding decreases both the ferryl iron and free radical reactivity of Hb. Conclusion: Hp protects against Hb-induced damage in the vasculature, not by preventing the primary reactivity of heme oxidants, but by rendering the resultant protein products less damaging. Antioxid. Redox Signal. 18, 2264-2273.
  •  
2.
  • Reeder, Brandon J, et al. (författare)
  • Tyrosine residues as redox cofactors in human hemoglobin : implications for engineering nontoxic blood substitutes
  • 2008
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 283:45, s. 30780-30787
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiratory proteins such as myoglobin and hemoglobin can, under oxidative conditions, form ferryl heme iron and protein-based free radicals. Ferryl myoglobin can safely be returned to the ferric oxidation state by electron donation from exogenous reductants via a mechanism that involves two distinct pathways. In addition to direct transfer between the electron donor and ferryl heme edge, there is a second pathway that involves "through-protein" electron transfer via a tyrosine residue (tyrosine 103, sperm whale myoglobin). Here we show that the heterogeneous subunits of human hemoglobin, the alpha and beta chains, display significantly different kinetics for ferryl reduction by exogenous reductants. By using selected hemoglobin mutants, we show that the alpha chain possesses two electron transfer pathways, similar to myoglobin. Furthermore, tyrosine 42 is shown to be a critical component of the high affinity, through-protein electron transfer pathway. We also show that the beta chain of hemoglobin, lacking the homologous tyrosine, does not possess this through-protein electron transfer pathway. However, such a pathway can be engineered into the protein by mutation of a specific phenylalanine residue to a tyrosine. High affinity through-protein electron transfer pathways, whether native or engineered, enhance the kinetics of ferryl removal by reductants, particularly at low reductant concentrations. Ferryl iron has been suggested to be a major cause of the oxidative toxicity of hemoglobin-based blood substitutes. Engineering hemoglobin with enhanced rates of ferryl removal, as we show here, is therefore likely to result in molecules better suited for in vivo oxygen delivery.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy