SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sweedler J. V.) "

Sökning: WFRF:(Sweedler J. V.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Groenen, M. A., et al. (författare)
  • Analyses of pig genomes provide insight into porcine demography and evolution
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 491:7424, s. 393-398
  • Tidskriftsartikel (refereegranskat)abstract
    • For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
  •  
2.
  • Elsik, Christine G., et al. (författare)
  • The Genome Sequence of Taurine Cattle : A Window to Ruminant Biology and Evolution
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 324:5926, s. 522-528
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
  •  
3.
  • Wang, C., et al. (författare)
  • 3D Particle-Free Printing of Biocompatible Conductive Hydrogel Platforms for Neuron Growth and Electrophysiological Recording
  • 2021
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 31:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrically conductive 3D periodic microscaffolds are fabricated using a particle-free direct ink writing approach for use as neuronal growth and electrophysiological recording platforms. A poly (2-hydroxyethyl methacrylate)/pyrrole ink, followed by chemical in situ polymerization of pyrrole, enables hydrogel printing through nozzles as small as 1 µm. These conductive hydrogels can pattern complex 2D and 3D structures and have good biocompatibility with test cell cultures (≈94.5% viability after 7 days). Hydrogel arrays promote extensive neurite outgrowth of cultured Aplysia californica pedal ganglion neurons. This platform allows extracellular electrophysiological recording of steady-state and stimulated electrical neuronal activities. In summation, this 3D conductive ink printing process enables the preparation of biocompatible and micron-sized structures to create customized in vitro electrophysiological recording platforms.
  •  
4.
  • Warren, Wesley C, et al. (författare)
  • The genome of a songbird
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 757-762
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
  •  
5.
  •  
6.
  • Squires, L. N., et al. (författare)
  • Serotonin and its metabolism in basal deuterostomes: insights from Strongylocentrotus purpuratus and Xenoturbella bocki
  • 2010
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 213:15, s. 2647-2654
  • Tidskriftsartikel (refereegranskat)abstract
    • Serotonin (5-HT), an important molecule in metazoans, is involved in a range of biological processes including neurotransmission and neuromodulation. Both its creation and release are tightly regulated, as is its removal. Multiple neurochemical pathways are responsible for the catabolism of 5-HT and are phyla specific; therefore, by elucidating these catabolic pathways we glean greater understanding of the relationships and origins of various transmitter systems. Here, 5-HT catabolic pathways were studied in Strongylocentrotus purpuratus and Xenoturbella bocki, two organisms occupying distinct positions in deuterostomes. The 5-HT-related compounds detected in these organisms were compared with those reported in other phyla. In S. purpuratus, 5-HT-related metabolites include N-acetyl serotonin, gamma-glutamyl-serotonin and 5-hydroxyindole acetic acid; the quantity and type were found to vary based on the specific tissues analyzed. In addition to these compounds, varying levels of tryptamine were also seen. Upon addition of a 5-HT precursor and a monoamine oxidase inhibitor, 5-HT itself was detected. In similar experiments using X. bocki tissues, the 5-HT-related compounds found included 5-HT sulfate, gamma-glutamyl-serotonin and 5-hydroxyindole acetic acid, as well as 5-HT and tryptamine. The sea urchin metabolizes 5-HT in a manner similar to both gastropod mollusks, as evidenced by the detection of gamma-glutamyl-serotonin, and vertebrates, as indicated by the presence of 5-hydroxyindole acetic acid and N-acetyl serotonin. In contrast, 5-HT metabolism in X. bocki appears more similar to common protostome 5-HT catabolic pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy