SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sybesma Watse) "

Sökning: WFRF:(Sybesma Watse)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baiguera, Stefano, et al. (författare)
  • Conformal Carroll scalars with boosts
  • 2023
  • Ingår i: SciPost Physics. - : Stichting SciPost. - 2542-4653. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We construct two distinct actions for scalar fields that are invariant under local Carroll boosts and Weyl transformations. Conformal Carroll field theories were recently argued to be related to the celestial holography description of asymptotically flat spacetimes. However, only few explicit examples of such theories are known, and they lack local Carroll boost symmetry on a generic curved background. We derive two types of conformal Carroll scalar actions with boost symmetry on a curved background in any dimension and compute their energy-momentum tensors, which are traceless. In the first type of theories, time derivatives dominate and spatial derivatives are suppressed. In the second type, spatial derivatives dominate, and constraints are present to ensure local boost invariance. By integrating out these constraints, we show that the spatial conformal Carroll theories can be reduced to lower-dimensional Euclidean CFTs, which is reminiscent of the embedding space construction.
  •  
2.
  • de Boer, Jan, et al. (författare)
  • Carroll stories
  • 2023
  • Ingår i: Journal of High Energy Physics (JHEP). - : Springer Nature. - 1126-6708 .- 1029-8479. ; 2023:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We study various aspects of the Carroll limit in which the speed of light is sent to zero. A large part of this paper is devoted to the quantization of Carroll field theories. We show that these exhibit infinite degeneracies in the spectrum and may suffer from non-normalizable ground states. As a consequence, partition functions of Carroll systems are ill-defined and do not lead to sensible thermodynamics. These seemingly pathological properties might actually be a virtue in the context of flat space holography. Better defined is the Carroll regime, in which we consider the leading order term in an expansion around vanishing speed of light without taking the strict Carroll limit. Such an expansion may lead to sensible notions of Carroll thermodynamics. An interesting example is a gas of massless particles with an imaginary chemical potential conjugate to the momentum. In the Carroll regime we show that the partition function of such a gas leads to an equation of state with w = −1. As a separate story, we study aspects of Carroll gravity and couplings to Carrollian energy-momentum tensors. We discuss many examples of solutions to Carroll gravity, including wormholes, Maxwell fields, solutions with a cosmological constant, and discuss the structure of geodesics in a Carroll geometry. The coupling of matter to Carroll gravity also allows us to derive energy-momentum tensors for hypothetical Carroll fluids from expanding relativistic fluids as well as directly from hydrostatic partition functions.
  •  
3.
  • de Boer, Jan, et al. (författare)
  • Carroll Symmetry, Dark Energy and Inflation
  • 2022
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Carroll symmetry arises from Poincare symmetry upon taking the limit of vanishing speed of light. We determine the constraints on the energy-momentum tensor implied by Carroll symmetry and show that for energy-momentum tensors of perfect fluid form, these imply an equation of state epsilon + P = 0 for energy density plus pressure. Therefore Carroll symmetry might be relevant for dark energy and inflation. In the Carroll limit, the Hubble radius goes to zero and outside it recessional velocities are naturally large compared to the speed of light. The de Sitter group of isometries, after the limit, becomes the conformal group in Euclidean flat space. We also study the Carroll limit of chaotic inflation, and show that the scalar field is naturally driven to have an equation of state with w = - 1. Finally we show that the freeze-out of scalar perturbations in the two point function at horizon crossing is a consequence of Carroll symmetry. To make the paper self-contained, we include a brief pedagogical review of Carroll symmetry, Carroll particles and Carroll field theories that contains some new material as well. In particular we show, using an expansion around speed of light going to zero, that for scalar and Maxwell type theories one can take two different Carroll limits at the level of the action. In the Maxwell case these correspond to the electric and magnetic limit. For point particles we show that there are two types of Carroll particles: those that cannot move in space and particles that cannot stand still.
  •  
4.
  • de Boer, Jan, et al. (författare)
  • Non-boost invariant fluid dynamics
  • 2020
  • Ingår i: SciPost Physics. - : Stichting SciPost. - 2542-4653. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider uncharged fluids without any boost symmetry on an arbitrary curved background and classify all allowed transport coefficients up to first order in derivatives. We assume rotational symmetry and we use the entropy current formalism. The curved background geometry in the absence of boost symmetry is called absolute or Aristotelian spacetime. We present a closed-form expression for the energy-momentum tensor in Landau frame which splits into three parts: a dissipative (10), a hydrostatic non-dissipative (2) and a non-hydrostatic non-dissipative part (4), where in parenthesis we have indicated the number of allowed transport coefficients. The non-hydrostatic non-dissipative transport coefficients can be thought of as the generalization of coefficients that would vanish if we were to restrict to linearized perturbations and impose the Onsager relations. For the two hydrostatic and the four non-hydrostatic non-dissipative transport coefficients we present a Lagrangian description. Finally when we impose scale invariance, thus restricting to Lifshitz fluids, we find 7 dissipative, 1 hydrostatic and 2 non-hydrostatic non-dissipative transport coefficients.
  •  
5.
  • Keränen, Ville, et al. (författare)
  • Correlation functions in theories with Lifshitz scaling
  • 2017
  • Ingår i: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :5
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2+1 dimensional quantum Lifshitz model can be generalised to a class of higher dimensional free field theories that exhibit Lifshitz scaling. When the dynamical critical exponent equals the number of spatial dimensions, equal time correlation functions of scaling operators in the generalised quantum Lifshitz model are given by a d-dimensional higher-derivative conformal field theory. Autocorrelation functions in the generalised quantum Lifshitz model in any number of dimensions can on the other hand be expressed in terms of autocorrelation functions of a two-dimensional conformal field theory. This also holds for autocorrelation functions in a strongly coupled Lifshitz field theory with a holographic dual of Einstein-Maxwell-dilaton type. The map to a two-dimensional conformal field theory extends to autocorrelation functions in thermal states and out-of-equilbrium states preserving symmetry under spatial translations and rotations in both types of Lifshitz models. Furthermore, the spectrum of quasinormal modes of scalar field perturbations in Lifshitz black hole backgrounds can be obtained analytically at low spatial momenta and exhibits a linear dispersion relation at z = d. At high momentum, the mode spectrum can be obtained in a WKB approximation and displays very different behaviour compared to holographic duals of conformal field theories. This has implications for thermalisation in strongly coupled Lifshitz field theories with z > 1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy