SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Székely Rita) "

Sökning: WFRF:(Székely Rita)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nikolausz, Marcell, et al. (författare)
  • Observation of bias associated with re-amplification of DNA isolated from denaturing gradient gels
  • 2005
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 0378-1097 .- 1574-6968. ; 244, s. 385-390
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA from environmental PCR products separated by denaturing gradient gel electrophoresis (DGGE) was isolated from the background smear rather than from discrete bands of the DGGE gel. The ‘‘interband’’ region was considered as a potential source of less dominant members of natural microbial communities. Surprisingly, instead of detecting new bands from the re-amplified PCR products, patterns very similar to the original ones were obtained regardless of the position of the ‘‘interband’’ region. The results suggest that the separation of amplicons by DGGE may not be perfect and band re-amplification based sequence analyses need careful interpretation.
  •  
2.
  • Singh, Vinayak, et al. (författare)
  • Identification of aminopyrimidine-sulfonamides as potent modulators of Wag31-mediated cell elongation in mycobacteria.
  • 2017
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 103:1, s. 13-25
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an urgent need to discover new anti-tubercular agents with novel mechanisms of action in order to tackle the scourge of drug-resistant tuberculosis. Here, we report the identification of such a molecule - an AminoPYrimidine-Sulfonamide (APYS1) that has potent, bactericidal activity against M. tuberculosis. Mutations in APYS1-resistant M. tuberculosis mapped exclusively to wag31, a gene that encodes a scaffolding protein thought to orchestrate cell elongation. Recombineering confirmed that a Gln201Arg mutation in Wag31 was sufficient to cause resistance to APYS1, however, neither overexpression nor conditional depletion of wag31 impacted M. tuberculosis susceptibility to this compound. In contrast, expression of the wildtype allele of wag31 in APYS1-resistant M. tuberculosis was dominant and restored susceptibility to APYS1 to wildtype levels. Time-lapse imaging and scanning electron microscopy revealed that APYS1 caused gross malformation of the old pole of M. tuberculosis, with eventual lysis. These effects resembled the morphological changes observed following transcriptional silencing of wag31 in M. tuberculosis. These data show that Wag31 is likely not the direct target of APYS1, but the striking phenotypic similarity between APYS1 exposure and genetic depletion of Wag31 in M. tuberculosis suggests that APYS1 might indirectly affect Wag31 through an as yet unknown mechanism.
  •  
3.
  • Sipos, Rita, et al. (författare)
  • Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis
  • 2007
  • Ingår i: FEMS Microbiology Ecology. - : Oxford University Press (OUP). - 0168-6496 .- 1574-6941. ; 60:2, s. 341-350
  • Tidskriftsartikel (refereegranskat)abstract
    • In the attempt to explore complex bacterial communities of environmental samples, primers hybridizing to phylogenetically highly conserved regions of 16S rRNA genes are widely used, but differential amplification is a recognized problem. The biases associated with preferential amplification of multitemplate PCR were investigated using ’universal’ bacteria-specific primers, focusing on the effect of primer mismatch, annealing temperature and PCR cycle number. The distortion of the template-to-product ratio was measured using predefined template mixtures and environmental samples by terminal restriction fragment length polymorphism analysis. When a 1 : 1 genomic DNA template mixture of two strains was used, primer mismatches inherent in the 63F primer presented a serious bias, showing preferential amplification of the template containing the perfectly matching sequence. The extent of the preferential amplification showed an almost exponential relation with increasing annealing temperature from 47 to 61°C. No negative effect of the various annealing temperatures was observed with the 27F primer, with no mismatches with the target sequences. The number of PCR cycles had little influence on the template-to-product ratios. As a result of additional tests on environmental samples, the use of a low annealing temperature is recommended in order to significantly reduce preferential amplification while maintaining the specificity of PCR. © 2007 Federation of European Microbiological Societies.
  •  
4.
  • Székely, Anna J., et al. (författare)
  • DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost
  • 2009
  • Ingår i: Microbial Ecology. - : Springer Science and Business Media LLC. - 0095-3628 .- 1432-184X. ; 57:3, s. 522-533
  • Tidskriftsartikel (refereegranskat)abstract
    • The amount of button mushroom (Agaricus bisporus) harvested from compost is largely affected by the microbial processes taking place during composting and the microbes inhabiting the mature compost. In this study, the microbial changes during the stages of this specific composting process were monitored, and the dominant bacteria of the mature compost were identified to reveal the microbiological background of the favorable properties of the heat-treated phase II mushroom compost. 16S ribosomal deoxyribonucleic acid (rDNA)-based denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) molecular fingerprinting methods were used to track the succession of microbial communities in summer and winter composting cycles. DNA from individual DGGE bands were reamplified and subjected to sequence analysis. Principal component analysis of fingerprints of the composting processes showed intensive changes in bacterial community during the 22-day procedure. Peak temperature samples grouped together and were dominated by Thermus thermophilus. Mature compost patterns were almost identical by both methods (DGGE, T-RFLP). To get an in-depth analysis of the mature compost bacterial community, the sequence data from cultivation of the bacteria and cloning of environmental 16S rDNA were uniquely coupled with the output of the environmental T-RFLP fingerprints (sequence-aided T-RFLP). This method revealed the dominance of a supposedly cellulose-degrading consortium composed of phylotypes related to Pseudoxanthomonas, Thermobifida, and Thermomonospora. © 2008 Springer Science+Business Media, LLC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy