SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Szakos A.) "

Sökning: WFRF:(Szakos A.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Krmar, R T, et al. (författare)
  • Acute renal failure in dense deposit disease: complete recovery after combination therapy with immunosuppressant and plasma exchange.
  • 2011
  • Ingår i: Clinical Nephrology. - 0301-0430. ; 75:S1, s. 4-10
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the clinical course of a female adolescent who was followed because of isolated microhematuria and hypocomplementemia before admission to hospital with a sudden onset of acute renal failure. At presentation, she exhibited complement consumption through the complement alternative pathway (AP) while other serologic tests were negative. Renal biopsy revealed dense deposit disease (DDD) with a crescentic pattern. Intravenous methylprednisolone, followed by plasma exchange (PE), and intravenous cyclophosphamide pulses were started shortly after admission. C3NeF and anti-factor H antibody tests were negative. Serum factor H and I levels were normal as well as factor H activity. Screening for mutation in the factor H gene revealed the H402 allele variant. Clinical remission, defined as normalization in renal function and in the activity levels of the complement AP, was noted at one month post-presentation and throughout the follow-up. A repeat renal biopsy showed the disappearance of crescent formation, whereas electron microscopy revealed no regression in dense transformation of the lamina densa. In summary, our patient was successfully treated with immunosuppressant and PE. The absence of known factors associated with DDD suggests that, in this particular case, other regulatory mechanisms of complement AP might have been involved in the disease process.
  •  
6.
  • Pablos, Isabel, et al. (författare)
  • Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CL(pro) substrate degradome
  • 2021
  • Ingår i: Cell Reports. - : Cell Press. - 2211-1247. ; 37:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The main viral protease (3CL(pro)) is indispensable for SARS-CoV-2 replication. We delineate the human protein substrate landscape of 3CL(pro) by TAILS substrate-targeted N-terminomics. We identify more than 100 substrates in human lung and kidney cells supported by analyses of SARS-CoV-2-infected cells. Enzyme kinetics and molecular docking simulations of 3CL(pro) engaging substrates reveal how noncanonical cleavage sites, which diverge from SARS-CoV, guide substrate specificity. Cleaving the interactors of essential effector proteins, effectively stranding them from their binding partners, amplifies the consequences of proteolysis. We show that 3CL(pro) targets the Hippo pathway, including inactivation of MAP4K5, and key effectors of transcription, mRNA processing, and translation. We demonstrate that Spike glycoprotein directly binds galectin-8, with galectin-8 cleavage disengaging CALCOCO2/NDP52 to decouple antiviral-autophagy. Indeed, in post-mortem COVID-19 lung samples, NDP52 rarely colocalizes with galectin-8, unlike in healthy lungs. The 3CL(pro) substrate degradome establishes a foundational substrate atlas to accelerate exploration of SARSCoV-2 pathology and drug design.
  •  
7.
  •  
8.
  • Razaghi, A, et al. (författare)
  • Proteomic Analysis of Pleural Effusions from COVID-19 Deceased Patients: Enhanced Inflammatory Markers
  • 2022
  • Ingår i: Diagnostics (Basel, Switzerland). - : MDPI AG. - 2075-4418. ; 12:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Critically ill COVID-19 patients with pleural effusion experience longer hospitalization, multisystem inflammatory syndrome, and higher rates of mortality. Generally, pleural effusion can serve as a diagnostic value to differentiate cytokine levels. This study aimed to evaluate the pleural effusions of COVID-19 deceased patients for 182 protein markers. Olink® Inflammation and Organ Damage panels were used to determine the level of 184 protein markers, e.g., ADA, BTC, CA12, CAPG, CD40, CDCP1, CXCL9, ENTPD2, Flt3L, IL-6, IL-8, LRP1, OSM, PD-L1, PTN, STX8, and VEGFA, which were raised significantly in COVID-19 deceased patients, showing over-stimulation of the immune system and ravaging cytokine storm. The rises of DPP6 and EDIL3 also indicate damage caused to arterial and cardiovascular organs. Overall, this study confirms the elevated levels of CA12, CD40, IL-6, IL-8, PD-L1, and VEGFA, proposing their potential either as biomarkers for the severity and prognosis of the disease or as targets for therapy. Particularly, this study reports upregulated ADA, BTC, DPP6, EDIL3, LIF, ENTPD2, Flt3L, and LRP1 in severe COVID-19 patients for the first time. Pearson’s correlation coefficient analysis indicates the involvement of JAK/STAT pathways as a core regulator of hyperinflammation in deceased COVID-19 patients, suggesting the application of JAK inhibitors as a potential efficient treatment.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy