SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Szarka Krisztina) "

Sökning: WFRF:(Szarka Krisztina)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Szarka, Nikolett, et al. (författare)
  • Traumatic brain injury impairs myogenic constriction of cerebral arteries : role of mitochondria-derived H2O2 and TRPV4-dependent activation of BKca Channels
  • 2018
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 35:7, s. 930-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) impairs autoregulation of cerebral blood flow, which contributes to the development of secondary brain injury, increasing mortality of patients. Impairment of pressure-induced myogenic constriction of cerebral arteries plays a critical role in autoregulatory dysfunction; however, the underlying cellular and molecular mechanisms are not well understood. To determine the role of mitochondria-derived H2O2 and large-conductance calcium-activated potassium channels (BKCa) in myogenic autoregulatory dysfunction, middle cerebral arteries (MCAs) were isolated from rats with severe weight drop-impact acceleration brain injury. We found that 24 h post-TBI MCAs exhibited impaired myogenic constriction, which was restored by treatment with a mitochondria-targeted antioxidant (mitoTEMPO), by scavenging of H2O2 (polyethylene glycol [PEG]-catalase) and by blocking both BKCa channels (paxilline) and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels (HC 067047). Further, exogenous administration of H2O2 elicited significant dilation of MCAs, which was inhibited by blocking either BKCa or TRPV4 channels. Vasodilation induced by the TRPV4 agonist GSK1016790A was inhibited by paxilline. In cultured vascular smooth muscle cells H2O2 activated BKCa currents, which were inhibited by blockade of TRPV4 channels. Collectively, our results suggest that after TBI, excessive mitochondria-derived H2O2 activates BKCa channels via a TRPV4-dependent pathway in the vascular smooth muscle cells, which impairs pressure-induced constriction of cerebral arteries. Future studies should elucidate the therapeutic potential of pharmacological targeting of this pathway in TBI, to restore autoregulatory function in order to prevent secondary brain damage and decrease mortality.
  •  
2.
  • Ayoglu, Burcu, et al. (författare)
  • Bead Arrays for Antibody and Complement Profiling Reveal Joint Contribution of Antibody Isotypes to C3 Deposition
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:5, s. e96403-
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of antigen arrays has provided researchers with great tools to identify reactivities against self or foreign antigens from body fluids. Yet, these approaches mostly do not address antibody isotypes and their effector functions even though these are key points for a more detailed understanding of disease processes. Here, we present a bead array-based assay for a multiplexed determination of antigen-specific antibody levels in parallel with their properties for complement activation. We measured the deposition of C3 fragments from serum samples to reflect the degree of complement activation via all three complement activation pathways. We utilized the assay on a bead array containing native and citrullinated peptide antigens to investigate the levels of IgG, IgM and IgA autoantibodies along with their complement activating properties in serum samples of 41 rheumatoid arthritis patients and 40 controls. Our analysis revealed significantly higher IgG reactivity against the citrullinated fibrinogen beta and filaggrin peptides as well as an IgA reactivity that was exclusive for citrullinated fibrinogen b peptide and C3 deposition in rheumatoid arthritis patients. In addition, we characterized the humoral immune response against the viral EBNA-1 antigen to demonstrate the applicability of this assay beyond autoimmune conditions. We observed that particular buffer compositions were demanded for separate measurement of antibody reactivity and complement activation, as detection of antigen-antibody complexes appeared to be masked due to C3 deposition. We also found that rheumatoid factors of IgM isotype altered C3 deposition and introduced false-positive reactivities against EBNA-1 antigen. In conclusion, the presented bead-based assay setup can be utilized to profile antibody reactivities and immune-complex induced complement activation in a high-throughput manner and could facilitate the understanding and diagnosis of several diseases where complement activation plays role in the pathomechanism.
  •  
3.
  • Czigler, Andras, et al. (författare)
  • Prostaglandin E2, a postulated mediator of neurovascular coupling, at low concentrations dilates whereas at higher concentrations constricts human cerebral parenchymal arterioles
  • 2020
  • Ingår i: Prostaglandins & other lipid mediators. - : Elsevier. - 1098-8823 .- 2212-196X. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • There is considerable controversy regarding the vasoactive action of prostaglandin E2 (PGE2). On the one hand, indirect evidence implicates that astrocytic release of PGE2 contributes to neurovascular coupling responses mediating functional hyperemia in the brain. On the other hand, overproduction of PGE2 was also reported to contribute to cerebral vasospasm associated with subarachnoid hemorrhage. The present study was conducted to resolve this controversy by determining the direct vasoactive effects of PGE2 in resistance-sized human cerebral parenchymal arterioles. To achieve this goal PGE2-induced isotonic vasomotor responses were assessed in parenchymal arterioles isolated from fronto-temporo-parietal cortical tissues surgically removed from patients and expression of PGE2 receptors were examined. In functionally intact parenchymal arterioles lower concentrations of PGE2 (from 10-8 to 10-6 mol/l) caused significant, endothelium-independent vasorelaxation, which was inhibited by the EP4 receptor blocker BGC201531. In contrast, higher concentrations of PGE2 evoked significant EP1-dependent vasoconstriction, which could not be reversed by the EP4 receptor agonist CAY10598. We also confirmed previous observations that PGE2 primarily evokes constriction in intracerebral arterioles isolated from R. norvegicus. Importantly, vascular mRNA and protein expression of vasodilator EP4 receptors was significantly higher than that of vasoconstrictor EP1 receptors in human cerebral arterioles. PGE2 at low concentrations dilates whereas at higher concentrations constricts human cerebral parenchymal arterioles. This bimodal vasomotor response is consistent with both the proposed vasodilator role of PGE2 during functional hyperemia and its putative role in cerebral vasospasm associated with subarachnoid hemorrhage in human patients.
  •  
4.
  • Klug, Stefanie J, et al. (författare)
  • TP53 codon 72 polymorphism and cervical cancer : a pooled analysis of individual data from 49 studies
  • 2009
  • Ingår i: The Lancet Oncology. - 1470-2045 .- 1474-5488. ; 10:8, s. 772-784
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Cervical cancer is caused primarily by human papillomaviruses (HPV). The polymorphism rs1042522 at codon 72 of the TP53 tumour-suppressor gene has been investigated as a genetic cofactor. More than 80 studies were done between 1998 and 2006, after it was initially reported that women who are homozygous for the arginine allele had a risk for cervical cancer seven times higher than women who were heterozygous for the allele. However, results have been inconsistent. Here we analyse pooled data from 49 studies to determine whether there is an association between TP53 codon 72 polymorphism and cervical cancer. METHODS: Individual data on 7946 cases and 7888 controls from 49 different studies worldwide were reanalysed. Odds ratios (OR) were estimated using logistic regression, stratifying by study and ethnic origin. Subgroup analyses were done for infection with HPV, ethnic origin, Hardy-Weinberg equilibrium, study quality, and the material used to determine TP53 genotype. FINDINGS: The pooled estimates (OR) for invasive cervical cancer were 1.22 (95% CI 1.08-1.39) for arginine homozygotes compared with heterozygotes, and 1.13 (0.94-1.35) for arginine homozygotes versus proline homozygotes. Subgroup analyses showed significant excess risks only in studies where controls were not in Hardy-Weinberg equilibrium (1.71 [1.21-2.42] for arginine homozygotes compared with heterozygotes), in non-epidemiological studies (1.35 [1.15-1.58] for arginine homozygotes compared with heterozygotes), and in studies where TP53 genotype was determined from tumour tissue (1.39 [1.13-1.73] for arginine homozygotes compared with heterozygotes). Null results were noted in studies with sound epidemiological design and conduct (1.06 [0.87-1.29] for arginine homozygotes compared with heterozygotes), and studies in which TP53 genotype was determined from white blood cells (1.06 [0.87-1.29] for arginine homozygotes compared with heterozygotes). INTERPRETATION: Subgroup analyses indicated that excess risks were most likely not due to clinical or biological factors, but to errors in study methods. No association was found between cervical cancer and TP53 codon 72 polymorphism when the analysis was restricted to methodologically sound studies.
  •  
5.
  • Kovács-Öller, Tamás, et al. (författare)
  • Traumatic Brain Injury Induces Microglial and Caspase3 Activation in the Retina
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 24:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) is among the main causes of sudden death after head trauma. These injuries can result in severe degeneration and neuronal cell death in the CNS, including the retina, which is a crucial part of the brain responsible for perceiving and transmitting visual information. The long-term effects of mild-repetitive TBI (rmTBI) are far less studied thus far, even though damage induced by repetitive injuries occurring in the brain is more common, especially amongst athletes. rmTBI can also have a detrimental effect on the retina and the pathophysiology of these injuries is likely to differ from severe TBI (sTBI) retinal injury. Here, we show how rmTBI and sTBI can differentially affect the retina. Our results indicate an increase in the number of activated microglial cells and Caspase3-positive cells in the retina in both traumatic models, suggesting a rise in the level of inflammation and cell death after TBI. The pattern of microglial activation appears distributed and widespread but differs amongst the various retinal layers. sTBI induced microglial activation in both the superficial and deep retinal layers. In contrast to sTBI, no significant change occurred following the repetitive mild injury in the superficial layer, only the deep layer (spanning from the inner nuclear layer to the outer plexiform layer) shows microglial activation. This difference suggests that alternate response mechanisms play a role in the case of the different TBI incidents. The Caspase3 activation pattern showed a uniform increase in both the superficial and deep layers of the retina. This suggests a different action in the course of the disease in sTBI and rmTBI models and points to the need for new diagnostic procedures. Our present results suggest that the retina might serve as such a model of head injuries since the retinal tissue reacts to both forms of TBI and is the most accessible part of the human brain.
  •  
6.
  • Lendvai-Emmert, Dominika, et al. (författare)
  • Mild traumatic brain injury-induced persistent blood-brain barrier disruption is prevented by cyclosporine A treatment in hypertension
  • 2023
  • Ingår i: Frontiers in Neurology. - : Frontiers Media S.A.. - 1664-2295. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Mild traumatic brain injury (mTBI) and hypertension synergize to induce persistent disruption of the blood-brain barrier (BBB), neuroinflammation and cognitive decline. However, the underlying mechanisms are not known. Cerebral production of Cyclophilin A (CyPA) is induced in hypertension and after TBI, and it was demonstrated to activate the nuclear factor-κB (NF-kB)- matrix-metalloproteinase-9 (MMP-9) pathway in cerebral vessels leading to BBB disruption.METHODS: To test the role of CyPA in mTBI- and hypertension-induced BBB disruption we induced mTBI in normotensive and spontaneously hypertensive rats (SHR), then the animals were treated with cyclosporine A (a specific inhibitor of CyPA production) or vehicle for 7 days. We assessed BBB permeability and integrity, cerebral expression and activity of the CyPA-NF-kB-MMP-9 pathway, extravasation of fibrin and neuroinflammation.RESULTS: We found that mild TBI induced BBB disruption and upregulation of the CyPA-NF-kB-MMP-9 pathway in hypertension, which were prevented by blocking CyPA. Cyclosporine treatment and preservation of BBB function prevented accumulation of blood-derived fibrin in the brain parenchyma of hypertensive rats after mTBI and reversed increased neuroinflammation.DISCUSSION: We propose that mTBI and hypertension interact to promote BBB disruption via the CyPA-NF-kB-MMP-9 pathway, and inhibition of cyclophilin production after mTBI may exert neuroprotection and improve cognitive function in hypertensive patients.
  •  
7.
  •  
8.
  • Szarka, Nikolett, et al. (författare)
  • Hypertension-Induced Enhanced Myogenic Constriction of Cerebral Arteries Is Preserved after Traumatic Brain Injury
  • 2017
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 34:14, s. 2315-2319
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) was shown to impair pressure-induced myogenic response of cerebral arteries, which is associated with vascular and neural dysfunction and increased mortality of TBI patients. Hypertension was shown to enhance myogenic tone of cerebral arteries via increased vascular production of 20-hydroxyeicosatrienoic acid (HETE). This adaptive mechanism protects brain tissue from pressure/volume overload; however, it can also lead to increased susceptibility to cerebral ischemia. Although both effects may potentiate the detrimental vascular consequences of TBI, it is not known how hypertension modulates the effect of TBI on myogenic responses of cerebral vessels. We hypothesized that in hypertensive rats, the enhanced myogenic cerebrovascular response is preserved after TBI. Therefore, we investigated the myogenic responses of isolated middle cerebral arteries (MCA) of normotensive and spontaneously hypertensive rats (SHR) after severe impact acceleration diffuse brain injury. TBI diminished myogenic constriction of MCAs isolated from normotensive rats, whereas the 20-HETE-mediated enhanced myogenic response of MCAs isolated from SHRs was not affected by TBI. These results suggest that the optimal cerebral perfusion pressure values and vascular signaling pathways can be different and, therefore, should be targeted differently in normotensive and hypertensive patients following TBI.
  •  
9.
  • Szarka, Nikolett, et al. (författare)
  • Single mild traumatic brain injury induces persistent disruption of the blood-brain barrier, neuroinflammation and ognitive decline in hypertensive rats
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 20:13, s. 3223-3223
  • Tidskriftsartikel (refereegranskat)abstract
    • Traumatic brain injury (TBI) induces blood-brain barrier (BBB) disruption, which contributes to secondary injury of brain tissue and development of chronic cognitive decline. However, single mild (m)TBI, the most frequent form of brain trauma disrupts the BBB only transiently. We hypothesized, that co-morbid conditions exacerbate persistent BBB disruption after mTBI leading to long term cognitive dysfunction. Since hypertension is the most important cerebrovascular risk factor in populations prone to mild brain trauma, we induced mTBI in normotensive Wistar and spontaneously hypertensive rats (SHR) and we assessed BBB permeability, extravasation of blood-borne substances, neuroinflammation and cognitive function two weeks after trauma. We found that mTBI induced a significant BBB disruption two weeks after trauma in SHRs but not in normotensive Wistar rats, which was associated with a significant accumulation of fibrin and increased neuronal expression of inflammatory cytokines TNFα, IL-1β and IL-6 in the cortex and hippocampus. SHRs showed impaired learning and memory two weeks after mild TBI, whereas cognitive function of normotensive Wistar rats remained intact. Future studies should establish the mechanisms through which hypertension and mild TBI interact to promote persistent BBB disruption, neuroinflammation and cognitive decline to provide neuroprotection and improve cognitive function in patients with mTBI. 
  •  
10.
  • Toth, Peter, et al. (författare)
  • Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling : Pathomechanisms, perspectives, and therapeutic implications
  • 2016
  • Ingår i: American Journal of Physiology. - : HighWire Press. - 0002-9513 .- 2163-5773. ; 311:5, s. H1118-H1131
  • Forskningsöversikt (refereegranskat)abstract
    • Traumatic brain injury (TBI) is a major health problem worldwide. In addition to its high mortality (35-40%), survivors are left with cognitive, behavioral, and communicative disabilities. While little can be done to reverse initial primary brain damage caused by trauma, the secondary injury of cerebral tissue due to cerebro-microvascular alterations and dysregulation of cerebral blood flow (CBF) is potentially preventable. This review focuses on functional, cellular, and molecular changes of autoregulatory function of CBF (with special focus on cerebrovascular myogenic response) that occur in cerebral circulation after TBI and explores the links between autoregulatory dysfunction, impaired myogenic response, microvascular impairment, and the development of secondary brain damage. We further provide a synthesized translational view of molecular and cellular mechanisms involved in cortical spreading depolarization-related neurovascular dysfunction, which could be targeted for the prevention or amelioration of TBI-induced secondary brain damage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy