SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sztalryd Carole) "

Sökning: WFRF:(Sztalryd Carole)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Drager, Luciano F., et al. (författare)
  • Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea
  • 2012
  • Ingår i: European Heart Journal. - Oxford : Oxford University Press. - 0195-668X .- 1522-9645. ; 33:6, s. 783-U33
  • Tidskriftsartikel (refereegranskat)abstract
    • Delayed lipoprotein clearance is associated with atherosclerosis. This study examined whether chronic intermittent hypoxia (CIH), a hallmark of obstructive sleep apnoea (OSA), can lead to hyperlipidaemia by inhibiting clearance of triglyceride rich lipoproteins (TRLP). Male C57BL/6J mice on high-cholesterol diet were exposed to 4 weeks of CIH or chronic intermittent air (control). FIO2 was decreased to 6.5 once per minute during the 12 h light phase in the CIH group. After the exposure, we measured fasting lipid profile. TRLP clearance was assessed by oral gavage of retinyl palmitate followed by serum retinyl esters (REs) measurements at 0, 1, 2, 4, 10, and 24 h. Activity of lipoprotein lipase (LpL), a key enzyme of lipoprotein clearance, and levels of angiopoietin-like protein 4 (Angptl4), a potent inhibitor of the LpL activity, were determined in the epididymal fat pads, skeletal muscles, and heart. Chronic intermittent hypoxia induced significant increases in levels of total cholesterol and triglycerides, which occurred in TRLP and LDL fractions (P 0.05 for each comparison). Compared with control mice, animals exposed to CIH showed increases in REs throughout first 10 h after oral gavage of retinyl palmitate (P 0.05), indicating that CIH inhibited TRLP clearance. CIH induced a 5-fold decrease in LpL activity (P 0.01) and an 80 increase in Angptl4 mRNA and protein levels in the epididymal fat, but not in the skeletal muscle or heart. CIH decreases TRLP clearance and inhibits LpL activity in adipose tissue, which may contribute to atherogenesis observed in OSA.
  •  
2.
  • Prats, Clara, et al. (författare)
  • Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine
  • 2006
  • Ingår i: Journal of Lipid Research. - 1539-7262. ; 47:11, s. 2392-2399
  • Tidskriftsartikel (refereegranskat)abstract
    • A better understanding of skeletal muscle lipid metabolism is needed to identify the molecular mechanisms relating intramuscular triglyceride (IMTG) to muscle metabolism and insulin sensitivity. An increasing number of proteins have been reported to be associated with intracellular triglyceride (TG), among them the PAT family members: perilipin, ADRP ( for adipocyte differentiation-related protein), and TIP47 ( for tail-interacting protein of 47 kDa). Hormone-sensitive lipase (HSL) is thought to be the major enzyme responsible for IMTG hydrolysis in skeletal muscle. In adipocytes, regulation of HSL by intracellular redistribution has been demonstrated. The existence of such regulatory mechanisms in skeletal muscle has long been hypothesized but has never been demonstrated. The aim of this study was to characterize the PAT family proteins associated with IMTG and to investigate the effect of epinephrine stimulation or muscle contraction on skeletal muscle TG content and HSL intracellular distribution. Rat soleus muscles were either incubated with epinephrine or electrically stimulated for 15 min. Single muscle fibers were used for morphological analysis by confocal and transmission electron microscopy. We show a decrease in IMTG in response to both lipolytic stimuli. Furthermore, we identify two PAT family proteins, ADRP and TIP47, associated with IMTG. Finally, we demonstrate HSL translocation to IMTG and ADRP after stimulation with epinephrine or contraction.
  •  
3.
  • Wang, Hong, et al. (författare)
  • Activation of Hormone-sensitive Lipase Requires Two Steps, Protein Phosphorylation and Binding to the PAT-1 Domain of Lipid Droplet Coat Proteins
  • 2009
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 284:46, s. 32116-32125
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipolysis is an important metabolic pathway controlling energy homeostasis through degradation of triglycerides stored in lipid droplets and release of fatty acids. Lipid droplets of mammalian cells are coated with one or more members of the PAT protein family, which serve important functions in regulating lipolysis. In this study, we investigate the mechanisms by which PAT family members, perilipin A, adipose differentiation-related protein (ADFP), and LSDP5, control lipolysis catalyzed by hormone-sensitive lipase (HSL), a major lipase in adipocytes and several non-adipose cells. We applied fluorescence microscopic tools to analyze proteins in situ in cultured Chinese hamster ovary cells using fluorescence recovery after photo-bleaching and anisotropy Forster resonance energy transfer. Fluorescence recovery after photobleaching data show that ADFP and LSDP5 exchange between lipid droplet and cytoplasmic pools, whereas perilipin A does not. Differences in protein mobility do not correlate with PAT protein-mediated control of lipolysis catalyzed by HSL or endogenous lipases. Forster resonance energy transfer and co-immunoprecipitation experiments reveal that each of the three PAT proteins bind HSL through interaction of the lipase with amino acids within the highly conserved amino-terminal PAT-1 domain. ADFP and LSDP5 bind HSL under basal conditions, whereas phosphorylation of serine residues within three amino-terminal protein kinase A consensus sequences of perilipin A is required for HSL binding and maximal lipolysis. Finally, protein kinase A-mediated phosphorylation of HSL increases lipolysis in cells expressing ADFP or LSDP5; in contrast, phosphorylation of perilipin A exerts the major control over HSL-mediated lipolysis when perilipin is the main lipid droplet protein.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy