SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Törndahl T.) "

Sökning: WFRF:(Törndahl T.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alberto, H. V., et al. (författare)
  • Slow-muon study of quaternary solar-cell materials : Single layers and p-n junctions
  • 2018
  • Ingår i: Physical Review Materials. - : AMER PHYSICAL SOC. - 2475-9953. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin films and p-n junctions for solar cells based on the absorber materials Cu(In, Ga) Se-2 and Cu2ZnSnS4 were investigated as a function of depth using implanted low energy muons. The most significant result is a clear decrease of the formation probability of the Mu(+) state at the heterojunction interface as well as at the surface of the Cu(In, Ga)Se-2 film. This reduction is attributed to a reduced bonding reaction of the muon in the absorber defect layer at its surface. In addition, the activation energies for the conversion from a muon in an atomiclike configuration to a anion-bound position are determined from temperature-dependence measurements. It is concluded that the muon probe provides a measurement of the effective surface defect layer width, both at the heterojunctions and at the films. The CIGS surface defect layer is crucial for solar-cell electrical performance and additional information can be used for further optimizations of the surface.
  •  
2.
  • Almqvist, Monica, et al. (författare)
  • Characterization of micromachined ultrasonic transducers using light diffraction tomography
  • 2005
  • Ingår i: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. - 0885-3010. ; 52:12, s. 2298-2302
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper demonstrates that light diffraction tomography can be used to measure the acoustic field of micromachined ultrasonic transducers (MUT) in cases in which standard methods like hydrophone and microphone measurements fail. Two types of MUTs have been characterized with the method, one air-coupled capacitive MUT (cMUT) and one waterloaded continuous wave (CW) miniature multilayer lead zirconate titanate (PZT) transducer. Light diffraction tomography is an ultrasound measurement method with some special characteristics. Based on the interaction of light and ultrasound, it combines light intensity measurements with tomography algorithms to produce a measurement system. The method offers nonperturbing pressure measurements with high spatial resolution. It has been shown that, under certain circumstances, light diffraction tomography can be used as an absolute pressure measurement method with accuracy in the order of 10% in water and 13% in air. The results show that air-coupled cMUTs in the frequency range of about 1 MHz as well as the extreme near field of a miniaturized CW 10 MHz waterloaded transducer were successfully characterized with light diffraction tomography.
  •  
3.
  • Donzel-Gargand, Olivier, et al. (författare)
  • Cu-depleted patches induced by presence of K during growth of CIGS absorbers
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • The conversion efficiency of the CIGS thin film solar cells has rapidly increased since introduction of the heavier alkali-doping (K, Rb, Cs). While the exclusive introduction of Na in the CIGS films has led to efficiencies up to 20,4% 1, the latest K, Rb or Cs post deposition treatments (PDT) have increased the efficiency to 22,6% 2. The exact role of this heavy-alkali PDT is still under discussion but three explanations have been discussed in the literature. First, that the heavy alkali PDT facilitates CdCu substitution, that results in an enhanced absorber type inversion, moving the p-n junction further into the CIGS bulk 3. Second, that the main effect from heavy alkali PDT is due to the formation of a K-In-Se2 layer, that passivates defects at the CIGS surface, reducing interface recombination 4. And third, that the heavy alkali PDT induces a Cu depletion at the surface of the CIGS which, by increasing the local Fermi level, increases the band bending; thus creating a higher potential barrier for holes to recombine 5.
  •  
4.
  • Keller, Jan, et al. (författare)
  • Wide-gap (Ag,Cu)(In,Ga)Se2 solar cells with different buffer materials—A path to a better heterojunction
  • 2020
  • Ingår i: Progress in Photovoltaics. - : Wiley. - 1062-7995 .- 1099-159X. ; 28:4, s. 237-250
  • Tidskriftsartikel (refereegranskat)abstract
    • This contribution concerns the effect of the Ag content in wide-gap AgwCu1-wIn1-xGaxSe2 (ACIGS) absorber films and its impact on solar cell performance. First-principles calculations are conducted, predicting trends in absorber band gap energy (Eg) and band structure across the entire compositional range (w and x). It is revealed that a detrimental negative conduction band offset (CBO) with a CdS buffer can be avoided for all possible absorber band gap values (Eg = 1.0–1.8 eV) by adjusting the Ag alloying level. This opens a new path to reduce interface recombination in wide-gap chalcopyrite solar cells. Indeed, corresponding samples show a clear increase in open-circuit voltage (VOC) if a positive CBO is created by sufficient Ag addition. A further extension of the beneficial compositional range (positive CBO at buffer/ACIGS interface) is possible when exchanging CdS with Zn1-ySnyOz, because of its lower electron affinity (χ). Nevertheless, the experimental results strongly suggest that at present, residual interface recombination still limits the performance of solar cells with optimized CBO, which show an efficiency of up to 15.1% for an absorber band gap of Eg = 1.45 eV.
  •  
5.
  • Naghavi, N., et al. (författare)
  • Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)(2) based thin film photovoltaics : Present status and current developments
  • 2010
  • Ingår i: Progress in Photovoltaics. - : Wiley. - 1062-7995 .- 1099-159X. ; 18:6, s. 411-433
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the present contribution is to give a review on the recent work concerning Cd-free buffer and window layers in chalcopyrite solar cells using various deposition techniques as well as on their adaptation to chalcopyrite-type absorbers such as Cu(In,Ga)Se-2, CuInS2, or Cu(In,Ga)(S,Se)(2). The corresponding solar-cell performances, the expected technological problems, and current attempts for their commercialization will be discussed. The most important deposition techniques developed in this paper are chemical bath deposition, atomic layer deposition, ILGAR deposition, evaporation, and spray deposition. These deposition methods were employed essentially for buffers based on the following three materials: In2S3, ZnS, Zn1-xMgxO.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy