SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(TAMBURINI Giovanni) "

Sökning: WFRF:(TAMBURINI Giovanni)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Askri, Dalel, et al. (författare)
  • A blood test to monitor bee health across a European network of agricultural sites of different land-use by MALDI BeeTyping mass spectrometry
  • 2024
  • Ingår i: Science of the Total Environment. - 0048-9697. ; 929
  • Tidskriftsartikel (refereegranskat)abstract
    • There are substantial concerns about impaired honey bee health and colony losses due to several poorly understood factors. We used MALDI profiling (MALDI BeeTyping®) analysis to investigate how some environmental and management factors under field conditions across Europe affected the honey bee haemolymph peptidome (all peptides in the circulatory fluid), as a profile of molecular markers representing the immune status of Apis mellifera. Honey bees were exposed to a range of environmental stressors in 128 agricultural sites across eight European countries in four biogeographic zones, with each country contributing eight sites each for two different cropping systems: oilseed rape (OSR) and apple (APP). The full haemolymph peptide profiles, including the presence and levels of three key immunity markers, namely the antimicrobial peptides (AMPs) Apidaecin, Abaecin and Defensin-1, allowed the honey bee responses to environmental variables to be discriminated by country, crop type and site. When considering just the AMPs, it was not possible to distinguish between countries by the prevalence of each AMP in the samples. However, it was possible to discriminate between countries on the amounts of the AMPs, with the Swedish samples in particular expressing high amounts of all AMPs. A machine learning model was developed to discriminate the haemolymphs of bees from APP and OSR sites. The model was 90.6 % accurate in identifying the crop type from the samples used to build the model. Overall, MALDI BeeTyping® of bee haemolymph represents a promising and cost-effective “blood test” for simultaneously monitoring dozens of peptide markers affected by environmental stressors at the landscape scale, thus providing policymakers with new diagnostic and regulatory tools for monitoring bee health.
  •  
4.
  • Bottero, Irene, et al. (författare)
  • Impact of landscape configuration and composition on pollinator communities across different European biogeographic regions
  • 2023
  • Ingår i: Frontiers in Ecology and Evolution. - 2296-701X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Heterogeneity in composition and spatial configuration of landscape elements support diversity and abundance of flower-visiting insects, but this is likely dependent on taxonomic group, spatial scale, weather and climatic conditions, and is particularly impacted by agricultural intensification. Here, we analyzed the impacts of both aspects of landscape heterogeneity and the role of climatic and weather conditions on pollinating insect communities in two economically important mass-flowering crops across Europe. Methods: Using a standardized approach, we collected data on the abundance of five insect groups (honey bees, bumble bees, other bees, hover flies and butterflies) in eight oilseed rape and eight apple orchard sites (in crops and adjacent crop margins), across eight European countries (128 sites in total) encompassing four biogeographic regions, and quantified habitat heterogeneity by calculating relevant landscape metrics for composition (proportion and diversity of land-use types) and configuration (the aggregation and isolation of land-use patches). Results: We found that flower-visiting insects responded to landscape and climate parameters in taxon- and crop-specific ways. For example, landscape diversity was positively correlated with honey bee and solitary bee abundance in oilseed rape fields, and hover fly abundance in apple orchards. In apple sites, the total abundance of all pollinators, and particularly bumble bees and solitary bees, decreased with an increasing proportion of orchards in the surrounding landscape. In oilseed rape sites, less-intensively managed habitats (i.e., woodland, grassland, meadows, and hedgerows) positively influenced all pollinators, particularly bumble bees and butterflies. Additionally, our data showed that daily and annual temperature, as well as annual precipitation and precipitation seasonality, affects the abundance of flower-visiting insects, although, again, these impacts appeared to be taxon- or crop-specific. Discussion: Thus, in the context of global change, our findings emphasize the importance of understanding the role of taxon-specific responses to both changes in land use and climate, to ensure continued delivery of pollination services to pollinator-dependent crops.
  •  
5.
  • Hodge, Simon, et al. (författare)
  • Design and Planning of a Transdisciplinary Investigation into Farmland Pollinators : Rationale, Co-Design, and Lessons Learned
  • 2022
  • Ingår i: Sustainability (Switzerland). - : MDPI AG. - 2071-1050. ; 14:17
  • Tidskriftsartikel (refereegranskat)abstract
    • To provide a complete portrayal of the multiple factors negatively impacting insects in agricultural landscapes it is necessary to assess the concurrent incidence, magnitude, and interactions among multiple stressors over substantial biogeographical scales. Trans-national ecological field investigations with wide-ranging stakeholders typically encounter numerous challenges during the design planning stages, not least that the scientific soundness of a spatially replicated study design must account for the substantial geographic and climatic variation among distant sites. ‘PoshBee’ (Pan-European assessment, monitoring, and mitigation of Stressors on the Health of Bees) is a multi-partner transdisciplinary agroecological project established to investigate the suite of stressors typically encountered by pollinating insects in European agricultural landscapes. To do this, PoshBee established a network of 128 study sites across eight European countries and collected over 50 measurements and samples relating to the nutritional, toxicological, pathogenic, and landscape components of the bees’ environment. This paper describes the development process, rationale, and end-result of each aspect of the of the PoshBee field investigation. We describe the main issues and challenges encountered during the design stages and highlight a number of actions or processes that may benefit other multi-partner research consortia planning similar large-scale studies. It was soon identified that in a multi-component study design process, the development of interaction and communication networks involving all collaborators and stakeholders requires considerable time and resources. It was also necessary at each planning stage to be mindful of the needs and objectives of all stakeholders and partners, and further challenges inevitably arose when practical limitations, such as time restrictions and labour constraints, were superimposed upon prototype study designs. To promote clarity for all stakeholders, for each sub-component of the study, there should be a clear record of the rationale and reasoning that outlines how the final design transpired, what compromises were made, and how the requirements of different stakeholders were accomplished. Ultimately, multi-national agroecological field studies such as PoshBee benefit greatly from the involvement of diverse stakeholders and partners, ranging from field ecologists, project managers, policy legislators, mathematical modelers, and farmer organisations. While the execution of the study highlighted the advantages and benefits of large-scale transdisciplinary projects, the long planning period emphasized the need to formally describe a design framework that could facilitate the design process of future multi-partner collaborations.
  •  
6.
  • Karp, Daniel S., et al. (författare)
  • Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 115:33, s. 7863-7870
  • Tidskriftsartikel (refereegranskat)abstract
    • The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies. © 2018 National Academy of Sciences. All rights reserved.
  •  
7.
  • LAURENT, Marion, et al. (författare)
  • Novel indices reveal that pollinator exposure to pesticides varies across biological compartments and crop surroundings
  • 2024
  • Ingår i: Science of the Total Environment. - 0048-9697. ; 927
  • Tidskriftsartikel (refereegranskat)abstract
    • Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.
  •  
8.
  • Marini, Lorenzo, et al. (författare)
  • Crop management modifies the benefits of insect pollination in oilseed rape
  • 2015
  • Ingår i: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809 .- 1873-2305. ; 207, s. 61-66
  • Tidskriftsartikel (refereegranskat)abstract
    • In a factorial field plot experiment, high and low levels of inorganic nitrogen and of insect pollinators visiting the crop were manipulated and their combined effects on oilseed rape yield were quantified. A third factor was also included, testing whether different cultivars responded differently to the tested factors. Insect pollination was required to reach high yield and seed quality (oil content). Final benefits of pollination service were, however, greatly modified by cultivar, where the seed yield of the open-pollinated cultivar largely depended on insect pollination whereas the two hybrid cultivars did not. A near significant interaction between nitrogen input and insect pollination was also found, i.e. benefits to crop yield from insect pollination seemed to increase with decreased nitrogen levels. The differential response of the three cultivars suggested opportunities to use cultivars that are less dependent on insect pollination in landscapes where this service has been deteriorated. Increased access of nitrogen seems to partly compensate yield losses from poor insect pollination. Integrating conservation, environmental and agronomic sciences is therefore crucial to sustain agriculture productions through optimized management of agronomic inputs and biodiversity-based ecosystem services. (C) 2015 Elsevier B.V. All rights reserved.
  •  
9.
  • Martin, Emily A., et al. (författare)
  • The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe
  • 2019
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 22:7, s. 1083-1094
  • Tidskriftsartikel (refereegranskat)abstract
    • Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species’ dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services. © 2019 John Wiley & Sons Ltd/CNRS
  •  
10.
  • Nicholson, Charlie C, et al. (författare)
  • Pesticide use negatively affects bumble bees across European landscapes
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687.
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species 1,2, leading to restrictions on these compounds 3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes 4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts 10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy