SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tadele Elsa) "

Sökning: WFRF:(Tadele Elsa)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Basic, Vladimir T., 1982-, et al. (författare)
  • Chronic cigarette smoke exposureimpairs skeletal muscle regenerative capacity in murineCOPD/emphysema model.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Cigarette smoke (CS) is a well established risk factor in the development of COPD and irreversible airflow limitation. In contrast, the extent to which CS exposure contributes to development of peripheral skeletal muscle dysfunction and wasting remains largely unknown. Decline in skeletal muscle regenerative capacity has been previously reported in COPD patients.Methods: To investigate effects of chronic CS exposure on skeletal muscle regenerative capacity, 129/SvJ mice were exposed to CS for 6 months. The expression levels of myogenin, Jarid2, Znf496, Notch1, Pax7, Fgf1 and Myh3, which are known to regulate skeletal muscle myogenesis, were studied. Additionally, number of fibers with central nuclei, myonuclei number and mean fiber cross-sectional area were assessed.Results: Compared to controls, skeletal muscles from CS-exposed mice exhibited significantly decreased expression of Jarid2, coupled with enhanced expression of Znf496, Notch1, Pax7, Fgf1 and Myh3. Expression of myogenin, a marker of terminally differentiated myofibers, was reduced. Furthermore, reduced muscle fiber crosssectional area, increased number of fibers with central nuclei and reduced myonuclei number were also observed in CS-exposed animals.Conclusions: Taken together, current results provide evidence linking chronic CS exposure and an ongoing damage/repair process as well as impaired regenerative capacity in skeletal muscles of CS-exposed mice.
  •  
2.
  • Basic, Vladimir T., et al. (författare)
  • Cigarette smoke exposure up-regulates Ubiquitin specific protease 19 in murine skeletal muscles as an adaptive response to prolonged ER stress
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Enhanced protein degradation via ubiquitin proteolytic system (UPS) was demonstrated to play an important role in the pathogenesis of cachexia syndrome and muscle wasting in patients with COPD and animal models of the disease. The role of cigarette smoke (CS) exposure in eliciting these abnormalities remains largely unknown. Usp19 is a member of UPS suggested to be involved in progressive muscle wasting in different catabolic conditions. However, factors regulating Usp19 expression, activity and correlation/s with CS-induced muscle atrophy remainunclear.Methods: To address these questions, 129 SvJ mice were exposed to cigarette smoke for 6 months and the gastrocnemius muscles were collected. Expression levels of Usp19 as well as pivotal mediators of ER stress response have been studied using PCR, qPCR, western blot and immunofluorescence. Factors regulating muscle Usp19 expression were studied using in-silico analysis of Usp19 promoter as well as by stimulating C2C12 myocytes with different inducers of ER stress including hypoxia, TNF and tunicamycin. Finally, Usp19 expression was depleted in C2C12 myocytes using specific Usp19 siRNA quadriplex and the expression of pivotal myogenic regulators were analyzed.Results: Usp19 mRNA expression was enhanced in skeletal muscles of CS-exposed mice. Concurrently, ER stress-associated Caspase 12 and Caspase 3 were activated in the CS-exposed group. Analysis of Usp19 promoter sequence revealed binding sites for ER stress response transcription factors such as HSF, STRE1 and AML1-α. Exposure of C2C12 myocytes to tunicamycin but not hypoxia elevated expression levels of Usp19. TNFstimulation elevated Usp19 protein expression but inhibited its RNA transcription in a dose- and time-dependent manner. Finally, Usp19 overexpression in tunicamycin-treated myocytes was accompanied by reduced expression of myosin heavy chain and tropomyosin and their levels were increased after knocking down Usp19 in C2C12 myocytes.Conclusions: In summary, our data demonstrated elevated expression of Usp19 in skeletal muscles of CS-exposed 129 SvJ mice. Moreover, Usp19 overexpression was associated with muscle adaptations to ER stress and suppression of myogenesis. Taken together; our results might provide further insight into molecular mechanisms underlying development and progression of skeletal muscle abnormalities in response to chronic cigarette smoke exposure.
  •  
3.
  • Basic, Vladimir Tomislav, et al. (författare)
  • Exposure to cigarette smoke induces overexpression of von Hippel-Lindau tumor suppressor in mouse skeletal muscle
  • 2012
  • Ingår i: American Journal of Physiology - Lung cellular and Molecular Physiology. - Bethesda, USA : American Physiological Society. - 1040-0605 .- 1522-1504. ; 303:6, s. L519-L527
  • Tidskriftsartikel (refereegranskat)abstract
    • Cigarette smoke (CS) is a well established risk factor in the development of chronic obstructive pulmonary disease (COPD). In contrast, the extent to which CS exposure contributes to the development of the systemic manifestations of COPD, such as skeletal muscle dysfunction and wasting remains largely unknown. Decreased skeletal muscle capillarization has been previously reported in early stages of COPD and might play an important role in the development of COPD-associated skeletal muscle abnormalities. To investigate the effects of chronic CS exposure on skeletal muscle capillarization and exercise tolerance a mouse model of CS exposure was used. The129/SvJ mice were exposed to CS for 6 months, and the expression of putative elements of the hypoxia-angiogenic signaling cascade as well as muscle capillarization were studied. Additionally, functional tests assessing exercise tolerance/endurance were performed in mice. Compared to controls, skeletal muscles from CS-exposed mice exhibited significantly enhanced expression of von Hippel-Lindau tumor suppressor (VHL), ubiquitin-conjugating enzyme E2D1 (UBE2D1) and prolyl hydroxylase-2 (PHD2). In contrast, hypoxia-inducible factor-1 (HIF1-α) and vascular endothelial growth factor (VEGF) expression was reduced. Furthermore, reduced muscle fiber cross-sectional area, decreased skeletal muscle capillarization, and reduced exercise tolerance were also observed in CS-exposed animals. Taken together, the current results provide evidence linking chronic CS exposure and induction of VHL expression in skeletal muscles leading towards impaired hypoxia-angiogenesis signal transduction, reduced muscle fiber cross-sectional area and decreased exercise tolerance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy