SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tagami Ayumu) "

Sökning: WFRF:(Tagami Ayumu)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cederholm, Linnea, et al. (författare)
  • Microwave processing of lignin in green solvents : A high-yield process to narrow-dispersity oligomers
  • 2020
  • Ingår i: Industrial crops and products (Print). - : Elsevier BV. - 0926-6690 .- 1872-633X. ; 145
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional narrow-dispersity kraft lignin oligomers in high-yields were produced by a combined microwave-assisted extraction/degradation process. The process took place under mild non-catalytic conditions, in green solvents, and moderate temperatures (80 -160 degrees C). High yields, i.e., 63 % and 64 %, of lignin oligomers with narrow dispersity were obtained after only 40 min microwave processing in methanol and ethanol, respectively. The ethanol-soluble yield increased substantially after microwave processing as compared to samples extracted by liquid-solid solvent-extraction. This increase was mainly ascribed to the cleavage of beta-O-4 linkages, as indicated by semiquantitative 2D-HSQC NMR. Under the corresponding conditions in methanol, the yields after microwave processing were similar to those obtained by liquid-solid solvent-extraction. The difference is likely ascribed to the different reactivities of the solvents as O-alkylation agents. Furthermore, the obtained lignin fractions had high functionality, as shown by hydroxyl-group quantification through P-31-NMR. This, along with the narrow dispersity and rich aromatic structure, makes these oligomers interesting precursors for future thermoset syntheses.
  •  
2.
  • Gioia, C., et al. (författare)
  • Lignin-Based Epoxy Resins : Unravelling the Relationship between Structure and Material Properties
  • 2020
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 21:5, s. 1920-1928
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we investigate the relationship between thermomechanical properties and chemical structure of well-characterized lignin-based epoxy resins. For this purpose, technical lignins from eucalyptus and spruce, obtained from the Kraft process, were used. The choice of lignins was based on the expected differences in molecular structure. The lignins were then refined by solvent fractionation, and three fractions with comparable molecular weights were selected to reduce effects of molar mass on the properties of the final thermoset resins. Consequently, any differences in thermomechanical properties are expected to correlate with molecular structure differences between the lignins. Oxirane moieties were selectively introduced to the refined fractions, and the resulting lignin epoxides were subsequently cross-linked with two commercially available polyether diamines (Mn = 2000 and 400) to obtain lignin-based epoxy resins. Molecular-scale characterization of the refined lignins and their derivatives were performed by 31P NMR, 2D-NMR, and DSC methods to obtain the detailed chemical structure of original and derivatized lignins. The thermosets were studied by DSC, DMA, and tensile tests and demonstrated diverse thermomechanical properties attributed to structural components in lignin and selected amine cross-linker. An epoxy resin with a lignin content of 66% showed a Tg of 79 °C from DMA, Young's modulus of 1.7 GPa, tensile strength of 66 MPa, and strain to failure of 8%. The effect of molecular lignin structure on thermomechanical properties was analyzed, finding significant differences between the rigid guaiacyl units in spruce lignin compared with sinapyl units in eucalyptus lignin. The methodology points toward rational design of molecularly tailored lignin-based thermosets.
  •  
3.
  • Han, Tong, et al. (författare)
  • Characterization of lignin at pre-pyrolysis temperature to investigate its melting problem
  • 2019
  • Ingår i: Fuel. - : Elsevier. - 0016-2361 .- 1873-7153. ; 235, s. 1061-1069
  • Tidskriftsartikel (refereegranskat)abstract
    • Technical lignin particles melt under relatively low temperature. This results in the problem in the continuous feeding and fluidization during lignin pyrolysis, which in turn limits its utilization on a large scale. In this study, two most available types of lignin have been used to investigate the lignin melting problem, which are Kraft lignin (KL) from pulping process and hydrolysis lignin (HL) from bio-ethanol production process. Elemental composition, thermal property and thermally decomposed derivatives of each sample are tested by elemental analyzer, TGA, DSC, and Py-GC/MS. Morphology, structure and crystal change before and after heat treatment are tested by microscopy, FTIR and XRD. All results suggest that lignin structure determines its melting properties. Kraft lignin from pulping process contains a less cross-linked structure. It melts under heating. On the other hand, hydrolysis lignin from hydrolysis process contains a highly crossed-linked and condensed structure. It does not melt before decomposition under heat treatment. Modifying lignin structure is suggested for the resolution of technical lignin melting problem.
  •  
4.
  • Tagami, Ayumu, et al. (författare)
  • Lignin-modified tunicate cellulose nanofiber (CNF)-starch composites: impact of lignin diversity on film performance
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Lignin fractions having different molecular weights and varied chemical structures isolated from kraft lignins of both softwood and hardwood via a sequential solvent fractionation technique were incorporated into a tunicate cellulose nanofibers (CNF) - starch mixture to prepare 100% bio-based composite films. The aim was to investigate the correlation between lignin diversity and film performance. It was confirmed that lignin’s distribution in the films was dependent on the solvents used for fractionation (acetone > methanol > ethanol > ethyl acetate) and influenced the optical properties of the films. The -OH group content and molecular weight of lignin were positively related to film density. In general, the addition of lignin fractions led to the thermal stability decrease and the Young's modulus increase of the composite films. The modulus of the films was found to decrease as the molecular weight of lignin increased, and a higher amount of carboxyl and phenolic -OH groups in the lignin fraction resulted in films with higher stiffness. The thermal analysis showed higher char content formation for lignin-containing films in a nitrogen atmosphere with increased molecular weight. In an oxygen atmosphere, the phenol contents, saturated side chains and short chain structures of lignin had impacts on the maximum decomposition temperature of the films, confirming the positive relationship between the antioxidant ability of lignin and thermo-oxidative stability of the corresponding film. This study addresses the importance of lignin diversities on composite film performance, which could be helpful for tailoring lignin’s applications in bio-based materials based on their specific characteristics.
  •  
5.
  • Tagami, Ayumu, et al. (författare)
  • Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses : Compositional, structural, thermal, antioxidant and adsorption properties
  • 2019
  • Ingår i: Industrial crops and products (Print). - : Elsevier. - 0926-6690 .- 1872-633X. ; 129, s. 123-134
  • Tidskriftsartikel (refereegranskat)abstract
    • This work summarizes the impact of solvent fractionation on the chemical structure, antioxidant activity, heating values, and thermal and adsorption properties of industrial hardwood and softwood kraft lignins. The aim of the research was to develop a simple approach for obtaining lignin fractions with tailored properties for applications in certain materials. Four common industrial solvents, namely, ethyl acetate, ethanol, methanol and acetone, in various combinations, were found to be efficient for separating spruce and eucalyptus kraft lignins into fractions with low polydispersities. The ethanol fraction of spruce and the ethyl acetate fraction of eucalyptus afforded the highest yields. Gel-permeation chromatography analysis was used to evaluate the efficiency of the chosen solvent combination for lignin fractionation. The composition and structure of the lignin material was characterized by elemental analysis, analytical pyrolysis (Py-GC/MS/FID) and 31P NMR spectroscopy. The thermal properties of the lignin samples were studied using thermogravimetric analysis. Proximate analysis data (ash, volatile components, organic matter and fixed carbon) was obtained through the direct measurement of weight changes in each experimental curve, and the high heating values (in MJ/kg) were calculated according to equations suggested in the literature. The adsorption properties of fractionated kraft lignins were studied using methylene blue dye. The correlations observed between molecular weight, composition and functionality and the thermal, radical scavenging and adsorption properties of the lignin fractions provides useful information for selecting the appropriate solvent combinations for specific applications of lignin raw materials (including their use as antioxidants, biofuels or sorbents in water treatment processes). © 2018
  •  
6.
  • Tagami, Ayumu, et al. (författare)
  • Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses: compositional, structural, thermal, antioxidant and sorption properties
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This work summarizes the impact of solvent fractionation on the chemical structure, antioxidant activity, heating values, and thermal and sorption properties of industrial hardwood and softwood kraft lignins. The aim was to develop a simple approach for the obtaining of lignin fractions with a tailored properties for the certain material applications.  Four common industrial solvents, namely, ethyl acetate, ethanol, methanol and acetone, in various combinations efficiently separated both spruce and eucalyptus kraft lignins into fractions with low polydispersities. The ethanol fraction of spruce and the ethyl acetate fraction of eucalyptus afforded the highest yields. Gel-permeation chromatography analysis was used to evaluate the efficiency of the chosen solvent combination for lignin fractionation. The composition and structure of the lignin material was characterized by elemental analysis, analytical pyrolysis (Py-GC/MS/FID) and 31P NMR spectroscopy. The thermal properties of the lignin samples were studied by thermogravimetric analysis. Proximate analysis data (ash, volatile components, organic matter and fixed carbon) were obtained through the direct measurement of weight changes in each experimental curve, and the high heating values (in MJ/kg) were calculated according to equations suggested in the literature. The sorption properties of fractionated kraft lignins were studied with respect to methylene blue dye. The clear correlation between certain structural features in the lignin fractions and the properties of the lignin provides useful information for selecting the appropriate solvent combinations for specific applications of lignin raw materials, including as antioxidants, biofuels or sorbents in water treatment processes.
  •  
7.
  • Tagami, Ayumu (författare)
  • Towards molecular weight-dependent uses of kraft lignin
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • There is growing demand for a more efficient use of polymers that originate from renewable feedstocks due to the depleting supply of fossil fuels, based on economic and environmental reasons. As a result, lignin has attracted renewed interest as a resource for various bioproducts. Lignin is a natural biopolymer with a high carbon content and is composed of aromatic moieties, with a high level of polar functionalities. This makes it a unique precursor for certain high-value applications, such as in biofuels, bioplastics, composite materials, carbon fibers and activated carbons and as a source of phenolic monomers and fine chemicals.Industrial lignins are formed as byproducts of pulping processes (such as kraft, sulfite or alkaline pulping) or result from the biorefining process, where carbohydrates are used for sugar production. Lignin’s intrinsic structure is significantly modified during the processing of lignocellulose, resulting in the formation of more diverse, condensed and less reactive raw materials. Since molecular mass and polydispersity are the most important parameters affecting the chemical reactivity and thermal properties of lignin, additional process steps to improve the quality of crude technical lignins, including kraft lignin, are needed. Solvent extraction is a potentially useful technique for further improving the polydispersity of technical lignins.This work summarizes the impact of solvent fractionation on the chemical structure, antioxidant activity, heating value, and thermal and sorption properties of industrial hardwood and softwood kraft lignins. The purpose was to understand the correlation between certain structural features in the lignin fractions and their properties to select the appropriate solvent combinations for specific applications of lignin raw materials.Four common industrial solvents, namely, ethyl acetate, ethanol, methanol and acetone, in various combinations were used to separate both spruce and eucalyptus kraft lignins into fractions with lower polydispersities. Gel-permeation chromatography analysis was used to evaluate the efficiency of the chosen solvent combination for lignin fractionation. The composition and structure of the lignin material were characterized by elemental analysis, analytical pyrolysis (Py-GC/MS/FID) and 31P NMR spectroscopy. The thermal properties of the lignin samples were studied by thermogravimetric analysis. Proximate analysis data (ash, volatile components, organic matter and fixed carbon) were obtained through the direct measurement of weight changes during the analysis, while the high heating values (in MJ/kg) were calculated according to equations suggested in the literature. The sorption properties of fractionated kraft lignins were studied with respect to methylene blue dye.Additionally, lignin fractions with different molecular weights (and therefore various chemical structures) that were isolated from both softwood and hardwood kraft lignins were incorporated into a tunicate cellulose nanofiber (CNF)-starch mixture to prepare 100% bio-based composite films. The aim was to investigate the correlation between lignin diversity and film performance. The transmittance, density and thermal properties of the films were investigated, as were their mechanical properties, including the tensile stress and Young’s modulus.This part of the study addressed the importance of lignin diversity on composite film performance, which could be helpful for tailoring lignin applications in bio-based composite materials based on the material’s specific requirements.
  •  
8.
  • Zhao, Yadong, 1985-, et al. (författare)
  • The Impact of Lignin Structural Diversity on Performance of Cellulose Nanofiber (CNF)-Starch Composite Films
  • 2019
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin fractions having different molecular weights and varied chemical structures isolated from kraft lignins of both softwood and hardwood via a sequential solvent fractionation technique were incorporated into a tunicate cellulose nanofibers (CNF)-starch mixture to prepare 100% bio-based composite films. The aim was to investigate the impact of lignin structural diversity on film performance. It was confirmed that lignin's distribution in the films was dependent on the polarity of solvents used for fractionation (acetone > methanol > ethanol > ethyl acetate) and influenced the optical properties of the films. The -OH group content and molecular weight of lignin were positively related to film density. In general, the addition of lignin fractions led to decrease in thermal stability and increase in Young's modulus of the composite films. The modulus of the films was found to decrease as the molecular weight of lignin increased, and a higher amount of carboxyl and phenolic -OH groups in the lignin fraction resulted in films with higher stiffness. The thermal analysis showed higher char content formation for lignin-containing films in a nitrogen atmosphere with increased molecular weight. In an oxygen atmosphere, the phenol content, saturated side chains and short chain structures of lignin had impacts on the maximum decomposition temperature of the films, confirming the relationship between the chemical structure of lignin and thermo-oxidative stability of the corresponding film. This study addresses the importance of lignin diversities on composite film performance, which could be helpful for tailoring lignin's applications in bio-based materials based on their specific characteristics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy