SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Takigawa Masaharu) "

Sökning: WFRF:(Takigawa Masaharu)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karjalainen, Hannu, et al. (författare)
  • Gene expression profiles in chondrosarcoma cells subjected to cyclic stretching and hydrostatic pressure. A cDNA array study.
  • 2003
  • Ingår i: Biorheology. - : IOS Press. - 0006-355X .- 1878-5034. ; 40:1-3, s. 93-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical forces have a profound effect on cartilage tissue and chondrocyte metabolism. Strenuous loading inhibits the cellular metabolism, while optimal level of loading at correct frequency raises an anabolic response in chondrocytes. In this study, we used Atlas Human Cancer cDNA array to investigate mRNA expression profiles in human chondrosarcoma cells stretched 8% for 6 hours at a frequency of 0.5 Hz. In addition, cultures were exposed to continuous and cyclic (0.5 Hz) 5 MPa hydrostatic pressure. Cyclic stretch had a more profound effect on the gene expression profiles than 5 MPa hydrostatic pressure. Several genes involved with the regulation of cell cycle were increased in stretched cells, as well as mRNAs for PDGF-B, glucose-1-phosphate uridylyltransferase, Tiam1, cdc37 homolog, Gem, integrin alpha6, and matrix metalloproteinase-3. Among down-regulated genes were plakoglobin, TGF-alpha, retinoic acid receptor-alpha and Wnt8b. A smaller number of changes was detected after pressure treatments. Plakoglobin was increased under cyclic and continuous 5 MPa hydrostatic pressure, while mitogen-activated protein kinase-9, proliferating cell nuclear antigen, Rad6, CD9 antigen, integrins alphaE and beta8, and vimentin were decreased. Cyclic and continuous pressurization induces a number of specific changes. In conclusion, a different set of genes were affected by three different types of mechanical stimuli applied on chondrosarcoma cells.
  •  
2.
  • Sironen, Reijo, et al. (författare)
  • cDNA array reveals mechanosensitive genes in chondrocytic cells under hydrostatic pressure.
  • 2002
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier. - 0006-3002 .- 1878-2434. ; 1591:1-3, s. 45-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrostatic pressure (HP) has a profound effect on cartilage metabolism in normal and pathological conditions, especially in weight-bearing areas of the skeletal system. As an important component of overall load, HP has been shown to affect the synthetic capacity and well-being of chondrocytes, depending on the mode, duration and magnitude of pressure. In this study we examined the effect of continuous HP on the gene expression profile of a chondrocytic cell line (HCS-2/8) using a cDNA array containing 588 well-characterized human genes under tight transcriptional control. A total of 51 affected genes were identified, many of them not previously associated with mechanical stimuli. Among the significantly up-regulated genes were immediate-early genes, and genes involved in heat-shock response (hsp70, hsp40, hsp27), and in growth arrest (GADD45, GADD153, p21(Cip1/Waf1), tob). Markedly down-regulated genes included members of the Id family genes (dominant negative regulators of basic helix-loop-helix transcription factors), and cytoplasmic dynein light chain and apoptosis-related gene NIP3. These alterations in the expression profile induce a transient heat-shock gene response and activation of genes involved in growth arrest and cellular adaptation and/or differentiation.
  •  
3.
  • Sironen, Reijo, et al. (författare)
  • High pressure effects on cellular expression profile and mRNA stability. A cDNA array analysis.
  • 2002
  • Ingår i: Biorheology. - : IOS Press. - 0006-355X .- 1878-5034. ; 39:1-2, s. 111-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrostatic pressure has a profound effect on cartilage tissue and chondrocyte metabolism. Depending on the type and magnitude of pressure various responses can occur in the cells. The mechanisms of mechanotransduction at cellular level and the events leading to specific changes in gene expression are still poorly understood. We have previously shown that induction of stress response in immortalized chondrocytes exposed to high static hydrostatic pressure increases the stability of heat shock protein 70 mRNA. In this study, our aim was to examine the effect of high pressure on gene expression profile and to study whether stabilization of mRNA molecules is a general phenomenon under this condition. For this purpose a cDNA array analysis was used to compare mRNA expression profile in pressurized vs. non-pressurized human chondrosarcoma cells (HCS 2/8). mRNA stability was analyzed using actinomycin-treated and nontreated samples collected after pressure treatment. A number of immediate-early genes, and genes regulating cell cycle and growth were up-regulated due to high pressure. Decrease in osteonectin, fibronectin, and collagen types VI and XVI mRNAs was observed. Also bikunin, cdc37 homologue and Tiam1, genes linked with hyaluronan metabolism, were down-regulated. In general, stability of down-regulated mRNA species appeared to increase. However, no increase in mRNA above control level due to stabilization was noticed in the genes available in the array. On the other hand, mRNAs of certain immediate-early genes, like c-jun, jun-B and c-myc, became destabilized under pressure treatment. Increased accumulation of mRNA on account of stabilization under high pressure conditions seems to be a tightly regulated, specific phenomenon.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy