SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Takizawa M.) "

Sökning: WFRF:(Takizawa M.)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdellaoui, G., et al. (författare)
  • Meteor studies in the framework of the JEM-EUSO program
  • 2017
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 143, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.
  •  
2.
  • Abdellaoui, G., et al. (författare)
  • First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere
  • 2018
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25(th) of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.
  •  
3.
  • Pierre, M., et al. (författare)
  • The XXL survey : First results and future
  • 2017
  • Ingår i: Astronomical Notes - Astronomische Nachrichten. - : Wiley-VCH Verlagsgesellschaft. - 0004-6337 .- 1521-3994. ; 338:2-3, s. 334-341
  • Tidskriftsartikel (refereegranskat)abstract
    • The XXL survey currently covers two 25 deg(2) patches with XMM observations of similar to 10 ks. We summarize the scientific results associated with the first release of the XXL dataset, which occurred in mid-2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z < 2) cluster, (z < 4) active galactic nuclei (AGN), and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-lambda observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters, and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z > 1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
  •  
4.
  • Bisconti, F, et al. (författare)
  • Mini-EUSO engineering model : Tests in open-sky condition
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a UV telescope that will look downwards to the Earth’s atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the first UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites and lightning, as well as meteors and bioluminescence from earth. Diffused light from laser shots from the ground, which mimic the fluorescence light emitted by Nitrogen molecules when extensive air showers pass through the atmosphere, can be used to verify the capability of this kind of detector to observe ultra-high energy cosmic rays. To validate the electronics and the trigger algorithms developed for Mini-EUSO, a scaled down version of the telescope with 1:9 of the original focal surface and a lens of 2.5 cm diameter has been built. Tests of the Mini-EUSO engineering model have been made in laboratory and in open sky condition. In this paper, we report results of observations of the night sky, which include the detection of stars, meteors, a planet and a rocket body reflecting the sunlight. Interesting results of the observation of city lights are also reported. 
  •  
5.
  • Casolino, M, et al. (författare)
  • Mini-EUSO experiment to study UV emission of terrestrial and astrophysical origin onboard of the International Space Station
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO will observe the Earth in the UV range (300 - 400 nm) offering the opportunity to study a variety of atmospheric events such as Transient Luminous Events (TLEs), meteors and marine bioluminescence. Furthermore it aims to search for Ultra High Energy Cosmic Rays (UHECR) above 1021 eV and Strange Quark Matter (SQM). The detector is expected to be launched to the International Space Station in August 2019 and look at the Earth in nadir mode from the UV-transparent window of the Zvezda module of the International Space Station. The instrument comprises a compact telescope with a large field of view (44?), based on an optical system employing two Fresnel lenses for light collection. The light is focused onto an array of 36 multi-anode photomultiplier tubes (MAPMT), for a total of 2304 pixels and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. In addition to the main detector, Mini-EUSO contains two ancillary cameras[4] for complementary measurements in the near infrared (1500 - 1600 nm) and visible (400 - 780 nm) range and also a 8 × 8 SiPM imaging array. 
  •  
6.
  • Miyamoto, H, et al. (författare)
  • Space debris detection and tracking with the techniques of cosmic ray physics
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Space Debris (SD) consist of non-operational artificial objects orbiting around the Earth, which could possibly damage space vehicles, such as the International Space Station (ISS) or other manned spacecrafts. The vast majority of such objects are cm-sized, not catalogued and usually the tracking data are not precise enough. Here we present the feasibility study of SD detection and tracking with techniques usually employed in cosmic-ray physics. For this purpose, we have evaluated the possibility of using Mini-EUSO, a space-borne fluorescence telescope to be deployed on the ISS, to track SD illuminated by the Sun. By means of ESAF (EUSO Simulation and analysis Framework) simulation and by developing the trigger algorithms, we estimated the minimum size and maximum distances of detectable SD. We then studied the number of possible SD detections using an ESA software called MASTER (Meteoroid and SD Terrestrial Environment Reference). With the Mini-EUSO Engineering Model (Mini-EUSO EM), we performed some measurements to estimate the reflectance of the most common SD materials and to demonstrate the ability of Mini-EUSO to detect SD events. We also performed some tests in open-sky conditions, identifying and tracking fast-moving objects. In particular, the detection of a rocket body allowed us to confirm the simulation outcomes predictions and the expected performance of the detector. 
  •  
7.
  • Miyamoto, H., et al. (författare)
  • The Euso@turlab : Test of mini-EUSO engineering model
  • 2019
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a key role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the TurLab facility has been used to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique. For example, in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View of the telescope. The Focal Surface of Mini-EUSO Engineering Model (Mini-EUSO EM) with the level 1 (L1) and 2 (L2) trigger logics implemented in the Photo-Detector Module (PDM) has been tested at TurLab. Tests related to the possibility of using an EUSO-like detector for other type of applications such as Space Debris (SD) monitoring and imaging detector have also been pursued. The tests and results obtained within the EUSO@TurLab Project on these different topics are presented. 
  •  
8.
  • Marcelli, L., et al. (författare)
  • Integration, qualification, and launch of the Mini-EUSO telescope on board the ISS
  • 2023
  • Ingår i: Rendiconti Lincei SCIENZE FISICHE E NATURALI. - : Springer Nature. - 2037-4631 .- 1720-0776. ; 34:1, s. 23-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Mini-EUSO is a high-sensitivity imaging telescope that observes the Earth from the ISS in the near ultraviolet band (290÷ 430 nm), through the nadir-facing, UV-transparent window in the Russian Zvezda module. The instrument, launched in 2019, has a field of view of 44∘, a spatial resolution on the Earth’s surface of 6.3 km and a temporal sampling rate of 2.5 microseconds. Thanks to its triggering and on-board processing, the telescope is capable of detecting UV emissions of cosmic, atmospheric, and terrestrial origin on different time scales, from a few microseconds up to tens of milliseconds. The optics is composed of two Fresnel lenses focusing light onto an array of 36 Hamamatsu Multi-Anode PhotoMultiplier Tubes, for a total of 2304 pixels. The telescope also contains two cameras in the near-infrared and visible, an 8-by-8 array of Silicon-PhotoMultipliers and a series of UV sensors to manage night-day transitions. The scientific objectives range from the observation of atmospheric phenomena [lightning, Transient Luminous Events (TLEs), ELVES], the study of meteoroids, the search of interstellar meteoroids and strange quark matter, mapping of the Earth’s nocturnal emissions in the ultraviolet range, and the search of cosmic rays with energy above 1021 eV. The instrument has been integrated and qualified in 2019, with the final tests in Baikonur prior to its launch. Operations involve periodic installation in the Zvezda module of the station with observations during the crew night time, with periodic downlink of data samples, with the full data being sent to the ground via pouches containing the data disks. Mission planning involves the selection of the optimal orbits to maximize the scientific return of the instrument. In this work, we will describe the various phases of construction, testing, and qualification prior to the launch and the in-flight operations of the instrument on board the ISS.
  •  
9.
  • Saunois, M., et al. (författare)
  • The global methane budget 2000–2012
  • 2016
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 8:2, s. 697-751
  • Tidskriftsartikel (refereegranskat)abstract
    • The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, < 30° N) as compared to mid (∼ 32 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH4 yr−1, range 51–72, −14 %) and higher emissions in Africa (86 Tg CH4 yr−1, range 73–108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.
  •  
10.
  • Barrillon, P., et al. (författare)
  • The EUSO@TurLab project in the framework of the JEM-EUSO program
  • 2023
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 55:2, s. 569-602
  • Tidskriftsartikel (refereegranskat)abstract
    • The EUSO@TurLab project aims at performing experiments to reproduce Earth UV emissions as seen from a low Earth orbit by the planned missions of the JEM-EUSO program. It makes use of the TurLab facility, which is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located at the Physics Department of the University of Turin. All the experiments are designed and performed based on simulations of the expected response of the detectors to be flown in space. In April 2016 the TUS detector and more recently in October 2019 the Mini-EUSO experiment, both part of the JEM-EUSO program, have been placed in orbit to map the UV Earth emissions. It is, therefore, now possible to compare the replicas performed at TurLab with the actual images detected in space to understand the level of fidelity in terms of reproduction of the expected signals. We show that the laboratory tests reproduce at the order of magnitude level the measurements from space in terms of spatial extension and time duration of the emitted UV light, as well as the intensity in terms of expected counts per pixel per unit time when atmospheric transient events, diffuse nightlow background light, and artificial light sources are considered. Therefore, TurLab is found to be a very useful facility for testing the acquisition logic of the detectors of the present and future missions of the JEM-EUSO program and beyond in order to reproduce atmospheric signals in the laboratory. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (7)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Takizawa, Y. (12)
Casolino, M. (10)
Parizot, E. (10)
Prevot, G. (10)
Capel, Francesca (9)
Belov, A. (9)
visa fler...
Bisconti, F. (9)
Ebisuzaki, T. (9)
Gorodetzky, P. (9)
Marcelli, L. (9)
Piotrowski, L. W. (9)
Plebaniak, Z. (9)
Sakaki, N. (9)
Szabelski, J. (9)
Miyamoto, H. (8)
Fuglesang, Christer, ... (8)
Blin-Bondil, S. (8)
Picozza, P. (8)
Ricci, M. (8)
Shinozaki, K. (8)
Fornaro, C. (7)
Kajino, F. (7)
Napolitano, T. (7)
Fenu, F. (7)
Cafagna, F. (6)
Cotto, G. (6)
Franceschi, A. (6)
Marszal, W. (6)
Osteria, G. (6)
Traiche, M. (6)
Cellino, A. (5)
Turriziani, S. (5)
Bertaina, M. (5)
Mignone, M. (5)
Caruso, R. (4)
Eser, J. (4)
Andrady, Anthony (4)
Aucamp, Pieter J. (4)
Ballaré, Carlos L. (4)
Björn, Lars Olof (4)
Erickson, David J. (4)
de Gruijl, Frank R. (4)
Häder, Donat-P. (4)
Ilyas, Mohammad (4)
Longstreth, Janice (4)
Norval, Mary (4)
Redhwi, Halim Hamid (4)
Takizawa, Yukio (4)
Wilson, Stephen R. (4)
Worrest, Robert C. (4)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (12)
Lunds universitet (5)
Karolinska Institutet (4)
Göteborgs universitet (2)
Stockholms universitet (2)
Linköpings universitet (2)
visa fler...
Linnéuniversitetet (2)
Umeå universitet (1)
Uppsala universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy