SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Talbot Monique) "

Sökning: WFRF:(Talbot Monique)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Michels, Judith, et al. (författare)
  • Cisplatin Resistance Associated with PARP Hyperactivation
  • 2013
  • Ingår i: Cancer Research. - Philadelphia : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 73:7, s. 2271-2280
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-small cell lung carcinoma patients are frequently treated with cisplatin (CDDP), most often yielding temporary clinical responses. Here, we show that PARP1 is highly expressed and constitutively hyperactivated in a majority of human CDDP-resistant cancer cells of distinct histologic origin. Cells manifesting elevated intracellular levels of poly(ADP-ribosyl)ated proteins (PAR(high)) responded to pharmacologic PARP inhibitors as well as to PARP1-targeting siRNAs by initiating a DNA damage response that translated into cell death following the activation of the intrinsic pathway of apoptosis. Moreover, PARP1-overexpressing tumor cells and xenografts displayed elevated levels of PAR, which predicted the response to PARP inhibitors in vitro and in vivo more accurately than PARP1 expression itself. Thus, a majority of CDDP-resistant cancer cells appear to develop a dependency to PARP1, becoming susceptible to PARP inhibitor-induced apoptosis. Cancer Res; 73(7); 2271-80.
  •  
3.
  • Tavares, Julia, et al. (författare)
  • Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 617:7959, s. 111-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical forests face increasing climate risk(1,2), yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, ?(50)) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk(3-5), little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters ?(50) and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both ?(50) and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM(50 )forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon(6,7), with strong implications for the Amazon carbon sink.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy