SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Taleat Zahra) "

Sökning: WFRF:(Taleat Zahra)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ranjbari, Elias, et al. (författare)
  • Direct Measurement of Total Vesicular Catecholamine Content with Electrochemical Microwell Arrays
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:16, s. 11325-11331
  • Tidskriftsartikel (refereegranskat)abstract
    • We have designed and fabricated a microwell array chip (MWAC) to trap and detect the entire content of individual vesicles after disruption of the vesicular membrane by an applied electrical potential. To understand the mechanism of vesicle impact electrochemical cytometry (VIEC) in microwells, we simulated the rupture of the vesicles and subsequent diffusion of entrapped analytes. Two possibilities were tested: (i) the vesicle opens toward the electrode, and (ii) the vesicle opens away from the electrode. These two possibilities were simulated in the different microwells with varied depth and width. Experimental VIEC measurements of the number of molecules for each vesicle in the MWAC were compared to VIEC on a gold microdisk electrode as a control, and the quantified catecholamines between these two techniques was the same. We observed a prespike foot in a significant number of events (similar to 20%) and argue this supports the hypothesis that the vesicles rupture toward the electrode surface with a more complex mechanism including the formation of a stable pore intermediate. This study not only confirms that in standard VIEC experiments the whole content of the vesicle is oxidized and quantified at the surface of the microdisk electrode but actively verifies that the adsorbed vesicle on the surface of the electrode forms a pore in the vicinity of the electrode rather than away from it. The fabricated MWAC promotes our ability to quantify the content of vesicles accurately, which is fundamentally important in bioanalysis of the vesicles.
  •  
2.
  • Stagkourakis, Stefanos, et al. (författare)
  • Dopamine Release Dynamics in the Tuberoinfundibular Dopamine System
  • 2019
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 39:21, s. 4009-4022
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between neuronal impulse activity and neurotransmitter release remains elusive. This issue is especially poorly understood in the neuroendocrine system, with its particular demands on periodically voluminous release of neurohormones at the interface of axon terminals and vasculature. Ashortage of techniques with sufficient temporal resolution has hindered real-time monitoring of the secretion of the peptides that dominate among the neurohormones. The lactotropic axis provides an important exception in neurochemical identity, however, as pituitary prolactin secretion is primarily under monoaminergic control, via tuberoinfundibular dopamine (TIDA) neurons projecting to the median eminence (ME). Here, we combined electrical or optogenetic stimulation and fast-scan cyclic voltammetry to address dopamine release dynamics in the male mouse TIDA system. Imposing different discharge frequencies during brief (3 s) stimulation of TIDA terminals in the ME revealed that dopamine output is maximal at 10 Hz, which was found to parallel the TIDA neuron action potential frequency distribution during phasic discharge. Over more sustained stimulation periods (150 s), maximal output occurred at 5 Hz, similar to the average action potential firing frequency of tonically active TIDA neurons. Application of the dopamine transporter blocker, methylphenidate, significantly increased dopamine levels in the ME, supporting a functional role of the transporter at the neurons' terminals. Lastly, TIDA neuron stimulation at the cell body yielded perisomatic release of dopamine, which may contribute to an ultrafast negative feedback mechanism to constrain TIDA electrical activity. Together, these data shed light on how spiking patterns in the neuroendocrine system translate to vesicular release toward the pituitary and identify how dopamine dynamics are controlled in the TIDA system at different cellular compartments.
  •  
3.
  • Taleat, Zahra, et al. (författare)
  • Anticancer Drug Tamoxifen Affects Catecholamine Transmitter Release and Storage from Single Cells.
  • 2019
  • Ingår i: ACS chemical neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 10:4, s. 2060-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical measurements of exocytosis combined with intracellular vesicle impact electrochemical cytometry have been used to evaluate the effect of an anticancer drug, tamoxifen, on catecholamine release at the single-cell level. Tamoxifen has been used for over 40 years to treat estrogen receptor-positive breast cancers during both early stages of the disease and in the adjuvant setting. Tamoxifen causes memory and cognitive dysfunction, but the reasons for the cognitive impairment and memory problems induced by this anticancer drug are not well-known. We show that tamoxifen, through a nongenomic mechanism, can modulate both exocytosis and vesicle catecholamine storage in a model cell line. The results indicate that exocytosis is inhibited at high concentrations of tamoxifen and is stimulated at low levels. Tamoxifen also elicits a significant concentration-dependent change in total catecholamine content of single vesicles, while sub-nanomolar concentrations of the drug have stimulatory activity on the catecholamine content of vesicles. In addition, it has profound effects on storage at higher concentrations. Tamoxifen also reduces the intracellular free Ca2+ but only at micromolar concentration, by acting on voltage-gated Ca2+ channels, which likely affects neurotransmitter secretion.
  •  
4.
  • Taleat, Zahra, 1982, et al. (författare)
  • Electrochemical Investigation of the Interaction between Catecholamines and ATP
  • 2018
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 90:3, s. 1601-1607
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of the colligative properties of adenosine 5'-triphosphate (ATP) and catecholamines has received the attention of scientists for decades, as they could explain the capabilities of secretory vesicles (SVs) to accumulate neurotransmitters. In this Article, we have applied electrochemical methods to detect such interactions in vitro, at the acidic pH of SVs (pH 5.5) and examined the effect of compounds having structural similarities that correlate with functional groups of ATP (adenosine, phosphoric acid and sodium phosphate salts) and catecholamines (catechol). Chronoamperometry and fast scan cyclic voltammetry (FSCV) provide evidence compatible with an interaction of the catechol and adenine rings. This interaction is also reinforced by an electrostatic interaction between the phosphate group of ATP and the protonated ammonium group of catecholamines. Furthermore, chronoamperometry data suggest that the presence of ATP subtlety reduces the apparent diffusion coefficient of epinephrine in aqueous media that adds an additional factor leading to a slower rate of catecholamine exocytosis. This adds another plausible mechanism to regulate individual exocytosis events to alter communication.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy