SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tamashiro J. K.) "

Sökning: WFRF:(Tamashiro J. K.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  • Dornelas, M., et al. (författare)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
3.
  • Patra, B., et al. (författare)
  • A genome wide dosage suppressor network reveals genomic robustness
  • 2017
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 45:1, s. 255-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high cooccurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures. © 2016 The Author(s).
  •  
4.
  • Evers, Simon S., et al. (författare)
  • Roman high and low avoidance rats differ in their response to chronic olanzapine treatment at the level of body weight regulation, glucose homeostasis, and cortico-mesolimbic gene expression
  • 2017
  • Ingår i: Journal of Psychopharmacology. - : SAGE Publications. - 0269-8811 .- 1461-7285. ; 31:11, s. 1437-1452
  • Tidskriftsartikel (refereegranskat)abstract
    • Olanzapine, an antipsychotic agent mainly used for treating schizophrenia, is frequently associated with body weight gain and diabetes mellitus. Nonetheless, studies have shown that not every individual is equally susceptible to olanzapine's weight-gaining effect. Therefore, Roman high and low avoidance rat strains were examined on their responsiveness to olanzapine treatment. The Roman high avoidance rat shares many behavioral and physiological characteristics with human schizophrenia, such as increased central dopaminergic sensitivity, whereas the Roman low avoidance rat has been shown to be prone to diet-induced obesity and insulin resistance. The data revealed that only the Roman high avoidance rats are susceptible to olanzapine-induced weight gain and attenuated glucose tolerance. Here it is suggested that the specific olanzapine-induced weight gain in Roman high avoidance rats could be related to augmented dopaminergic sensitivity at baseline through increased expression of prefrontal cortex dopamine receptor D1 mRNA and nucleus accumbens dopamine receptor D2 mRNA expression. Regression analyses revealed that olanzapine-induced weight gain in the Roman high avoidance rat is above all related to increased prolactin levels, whereas changes in glucose homeostasis is best explained by differences in central dopaminergic receptor expressions between strains and treatment. Our data indicates that individual differences in dopaminergic receptor expression in the cortico-mesolimbic system are related to susceptibility to olanzapine-induced weight gain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy