SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tammela Tuomas) "

Sökning: WFRF:(Tammela Tuomas)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Auvinen, Anssi, et al. (författare)
  • Prostate Cancer Screening With PSA, Kallikrein Panel, and MRI : The ProScreen Randomized Trial
  • 2024
  • Ingår i: JAMA. - 0098-7484. ; 331:17, s. 1452-1459
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: Prostate-specific antigen (PSA) screening has potential to reduce prostate cancer mortality but frequently detects prostate cancer that is not clinically important.OBJECTIVE: To describe rates of low-grade (grade group 1) and high-grade (grade groups 2-5) prostate cancer identified among men invited to participate in a prostate cancer screening protocol consisting of a PSA test, a 4-kallikrein panel, and a magnetic resonance imaging (MRI) scan.DESIGN, SETTING, AND PARTICIPANTS: The ProScreen trial is a clinical trial conducted in Helsinki and Tampere, Finland, that randomized 61 193 men aged 50 through 63 years who were free of prostate cancer in a 1:3 ratio to either be invited or not be invited to undergo screening for prostate cancer between February 2018 and July 2020.INTERVENTIONS: Participating men randomized to the intervention underwent PSA testing. Those with a PSA level of 3.0 ng/mL or higher underwent additional testing for high-grade prostate cancer with a 4-kallikrein panel risk score. Those with a kallikrein panel score of 7.5% or higher underwent an MRI of the prostate gland, followed by targeted biopsies for those with abnormal prostate gland MRI findings. Final data collection occurred through June 31, 2023.MAIN OUTCOMES AND MEASURES: In descriptive exploratory analyses, the cumulative incidence of low-grade and high-grade prostate cancer after the first screening round were compared between the group invited to undergo prostate cancer screening and the control group.RESULTS: Of 60 745 eligible men (mean [SD] age, 57.2 [4.0] years), 15 201 were randomized to be invited and 45 544 were randomized not to be invited to undergo prostate cancer screening. Of 15 201 eligible males invited to undergo screening, 7744 (51%) participated. Among them, 32 low-grade prostate cancers (cumulative incidence, 0.41%) and 128 high-grade prostate cancers (cumulative incidence, 1.65%) were detected, with 1 cancer grade group result missing. Among the 7457 invited men (49%) who refused participation, 7 low-grade prostate cancers (cumulative incidence, 0.1%) and 44 high-grade prostate cancers (cumulative incidence, 0.6%) were detected, with 7 cancer grade groups missing. For the entire invited screening group, 39 low-grade prostate cancers (cumulative incidence, 0.26%) and 172 high-grade prostate cancers (cumulative incidence, 1.13%) were detected. During a median follow-up of 3.2 years, in the group not invited to undergo screening, 65 low-grade prostate cancers (cumulative incidence, 0.14%) and 282 high-grade prostate cancers (cumulative incidence, 0.62%) were detected. The risk difference for the entire group randomized to the screening invitation vs the control group was 0.11% (95% CI, 0.03%-0.20%) for low-grade and 0.51% (95% CI, 0.33%-0.70%) for high-grade cancer.CONCLUSIONS AND RELEVANCE: In this preliminary descriptive report from an ongoing randomized clinical trial, 1 additional high-grade cancer per 196 men and 1 low-grade cancer per 909 men were detected among those randomized to be invited to undergo a single prostate cancer screening intervention compared with those not invited to undergo screening. These preliminary findings from a single round of screening should be interpreted cautiously, pending results of the study's primary mortality outcome.TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03423303.
  •  
2.
  • Rannikko, Antti, et al. (författare)
  • Population-based randomized trial of screening for clinically significant prostate cancer ProScreen : a pilot study
  • 2022
  • Ingår i: BJU International. - : Wiley. - 1464-4096 .- 1464-410X. ; 130:2, s. 193-199
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To evaluate the feasibility of a population-based screening trial using prostate-specific antigen (PSA), a kallikrein panel and multiparametric magnetic resonance imaging (MRI) aimed at minimizing overdiagnosis, while retaining mortality benefit. Patients and Methods: Feasibility of the screening algorithm was evaluated in terms of participation, screening test results and cancer detection. A random sample of 400 men aged 65 years was identified from the population registry and invited for screening with three stepwise tests (PSA, kallikrein panel and MRI). Men with PSA levels ≥3 ng/mL were further tested with the kallikrein panel, and those with positive findings (risk >7.5%) were referred for prostate MRI. Men with positive MRI (Prostate Imaging Reporting and Data System [PI-RADS] score 3–5) had targeted biopsies only. Men with negative MRI, but PSA density ≥0.15 underwent systematic biopsies. Results: Of the 399 men invited, 158 (40%) participated and 27 had PSA levels ≥3 ng/mL (7% of the invited and 17% of the participants). Of these, 22 had a positive kallikrein panel (6% of the invited and 81% of the PSA-positive men). Finally, 10 men (3% of the invited and 45% of 4Kscore [kallikrein panel]-positive) had a suspicious MRI finding (PI-RADS score ≥3) and five were diagnosed with a clinically significant prostate cancer (Gleason Grade Group [GG] ≥2) at fusion biopsy (3% of the participants), with two GG 1 cases (1%). Additional testing (kallikrein panel and MRI) after PSA reduced biopsies by 56%. Conclusion: The findings constitute proof of principle for our screening protocol, as we achieved a substantial detection rate for clinically significant cancer with few clinically insignificant cases. Participation, however, was suboptimal.
  •  
3.
  • Aspelund, Aleksanteri, et al. (författare)
  • The Schlemm's canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel
  • 2014
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 124:9, s. 3975-3986
  • Tidskriftsartikel (refereegranskat)abstract
    • In glaucoma, aqueous outflow into the Schlemm's canal (SC) is obstructed. Despite striking structural and functional similarities with the lymphatic vascular, system, it is unknown whether the SC is a blood or lymphatic vessel. Here, we demonstrated the expression of lymphatic endothelial cell markers by the SC in murine and zebrafish models as well as in human eye tissue. The initial stages of SC development involved induction of the transcription factor PROX1 and the lymphangiogenic receptor tyrosine kinase VEGFR-3 in venous endothelial cells in postnatal mice. Using gene deletion and function-blocking antibodies in mice, we determined that the lymphangiogenic growth factor VEGF-C and its receptor, VEGFR-3, are essential for SC development. Delivery of VEGF-C into the adult eye resulted in sprouting, proliferation, and growth of SC endothelial cells, whereas VEGF-A obliterated the aqueous outflow system. Furthermore, a single injection of recombinant VEGF-C induced SC growth and was associated with trend toward a sustained decrease in intraocular pressure in adult mice. These results reveal the evolutionary conservation of the lymphatic-like phenotype of the SC, implicate VEGF-C and VEGFR-3 as critical regulators of SC lymphangiogenesis, and provide a basis for further studies on therapeutic manipulation of the SC with VEGF-C in glaucoma treatment.
  •  
4.
  •  
5.
  • Calvo, Charles-Félix, et al. (författare)
  • Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis.
  • 2011
  • Ingår i: Genes & Development. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 25:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.
  •  
6.
  • Tammela, Tuomas, et al. (författare)
  • Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation.
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 454:7204, s. 656-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is a key process in several pathological conditions, including tumour growth and age-related macular degeneration. Vascular endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells. VEGFR-3 (also known as FLT-4) is present in all endothelia during development, and in the adult it becomes restricted to the lymphatic endothelium. However, VEGFR-3 is upregulated in the microvasculature of tumours and wounds. Here we demonstrate that VEGFR-3 is highly expressed in angiogenic sprouts, and genetic targeting of VEGFR-3 or blocking of VEGFR-3 signalling with monoclonal antibodies results in decreased sprouting, vascular density, vessel branching and endothelial cell proliferation in mouse angiogenesis models. Stimulation of VEGFR-3 augmented VEGF-induced angiogenesis and sustained angiogenesis even in the presence of VEGFR-2 (also known as KDR or FLK-1) inhibitors, whereas antibodies against VEGFR-3 and VEGFR-2 in combination resulted in additive inhibition of angiogenesis and tumour growth. Furthermore, genetic or pharmacological disruption of the Notch signalling pathway led to widespread endothelial VEGFR-3 expression and excessive sprouting, which was inhibited by blocking VEGFR-3 signals. Our results implicate VEGFR-3 as a regulator of vascular network formation. Targeting VEGFR-3 may provide additional efficacy for anti-angiogenic therapies, especially towards vessels that are resistant to VEGF or VEGFR-2 inhibitors.
  •  
7.
  • Tammela, Tuomas, et al. (författare)
  • VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling.
  • 2011
  • Ingår i: Nature Cell Biology. - : Springer Science and Business Media LLC. - 1465-7392 .- 1476-4679. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting. Surprisingly, we found that endothelial deletion of Vegfr3, but not VEGFR-3-blocking antibodies, postnatally led to excessive angiogenic sprouting and branching, and decreased the level of Notch signalling, indicating that VEGFR-3 possesses passive and active signalling modalities. Furthermore, macrophages expressing the VEGFR-3 and VEGFR-2 ligand VEGF-C localized to vessel branch points, and Vegfc heterozygous mice exhibited inefficient angiogenesis characterized by decreased vascular branching. FoxC2 is a known regulator of Notch ligand and target gene expression, and Foxc2(+/-);Vegfr3(+/-) compound heterozygosity recapitulated homozygous loss of Vegfr3. These results indicate that macrophage-derived VEGF-C activates VEGFR-3 in tip cells to reinforce Notch signalling, which contributes to the phenotypic conversion of endothelial cells at fusion points of vessel sprouts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy