SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tamminen M) "

Sökning: WFRF:(Tamminen M)

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hassler, B., et al. (författare)
  • Past changes in the vertical distribution of ozone - Part 1: Measurement techniques, uncertainties and availability
  • 2014
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 7:5, s. 1395-1427
  • Tidskriftsartikel (refereegranskat)abstract
    • Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information for each data set is also given.
  •  
3.
  • Janssens-Maenhout, G., et al. (författare)
  • Toward an operational anthropogenic CO2 emissions monitoring and verification support capacity
  • 2020
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 101:8, s. 1439-1451
  • Tidskriftsartikel (refereegranskat)abstract
    • Under the Paris Agreement (PA), progress of emission reduction efforts is tracked on the basis of regular updates to national greenhouse gas (GHG) inventories, referred to as bottom-up estimates. However, only top-down atmospheric measurements can provide observation-based evidence of emission trends. Today, there is no internationally agreed, operational capacity to monitor anthropogenic GHG emission trends using atmospheric measurements to complement national bottom-up inventories. The European Commission (EC), the European Space Agency, the European Centre for Medium-Range Weather Forecasts, the European Organisation for the Exploitation of Meteorological Satellites, and international experts are joining forces to develop such an operational capacity for monitoring anthropogenic CO2 emissions as a new CO2 service under the EC's Copernicus program. Design studies have been used to translate identified needs into defined requirements and functionalities of this anthropogenic CO2 emissions Monitoring and Verification Support (CO2MVS) capacity. It adopts a holistic view and includes components such as atmospheric spaceborne and in situ measurements, bottom-up CO2 emission maps, improved modeling of the carbon cycle, an operational data-assimilation system integrating top-down and bottom-up information, and a policy-relevant decision support tool. The CO2MVS capacity with operational capabilities by 2026 is expected to visualize regular updates of global CO2 emissions, likely at 0.05° x 0.05°. This will complement the PA's enhanced transparency framework, providing actionable information on anthropogenic CO2 emissions that are the main driver of climate change. This information will be available to all stakeholders, including governments and citizens, allowing them to reflect on trends and effectiveness of reduction measures. The new EC gave the green light to pass the CO2MVS from exploratory to implementing phase.
  •  
4.
  • Kukkonen, J., et al. (författare)
  • Towards a Comprehensive Evaluation of the Environmental and Health Impacts of Shipping Emissions
  • 2022
  • Ingår i: Springer Proceedings in Complexity. - Cham : Springer International Publishing. - 2213-8684 .- 2213-8692. ; , s. 329-336
  • Konferensbidrag (refereegranskat)abstract
    • We present a new concept for marine research, applied in the EU-funded project EMERGE, “Evaluation, control and Mitigation of the EnviRonmental impacts of shippinG Emissions” (2020–2024; https://emerge-h2020.eu/ ). For the first time, both the various marine and atmospheric impacts of the shipping sector have been and will be comprehensively analyzed, using a concerted modelling and measurements framework. The experimental part of the project focuses on five European geographical case studies in different ecologically vulnerable regions, and a mobile onboard case study. The EMERGE consortium has also developed a harmonised and integrated modelling framework to assess the combined impacts of shipping emissions, both (i) on the marine ecosystems and (ii) the atmospheric environment. The first results include substantial refinements of a range of models to be applied, especially those for the STEAM and OpenDrift models. In particular, the STEAM (Ship Traffic Emission Assessment Model) model has been extended to allow for the effects of atmospheric and oceanographic factors on the fuel consumption and emissions of the ships. The OpenDrift model has been improved to take into account the partitioning, degradation, and volatilization of pollutants in water. The predicted emission and discharge values have been used as input for both regional scale atmospheric dispersion models, such as WRF-CMAQ (Weather Research and Forecasting—Community Multiscale Air Quality Model) and SILAM (System for Integrated modeLling of Atmospheric composition), and water quality and circulation models, such as OpenDrift (Open source model for the drifting of substances in the ocean) and Delft3D (oceanographic model). The case study regions are Eastern Mediterranean, Northern Adriatic Sea, the Lagoon of Aveiro, the Solent Strait and the Öresund Strait. We have also conducted a substantial part of the experimental campaigns scheduled in the project. The final assessment will include the benefits and costs of control and mitigation options affecting water quality, air pollution exposure, health impacts, climate forcing, and ecotoxicological effects and bioaccumulation of pollutants in marine biota.
  •  
5.
  • Laeng, A., et al. (författare)
  • Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles
  • 2014
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 7:11, s. 3971-3987
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of an extensive validation program of the most recent version of ozone vertical profiles retrieved with the IMK/IAA (Institute for Meteorology and Climate Research/Instituto de Astrofisica de Andalucia) MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) research level 2 processor from version 5 spectral level 1 data. The time period covered corresponds to the reduced spectral resolution period of the MIPAS instrument, i.e., January 2005-April 2012. The comparison with satellite instruments includes all post-2005 satellite limb and occultation sensors that have measured the vertical profiles of tropospheric and stratospheric ozone: ACE-FTS, GOMOS, HALOE, HIRDLS, MLS, OSIRIS, POAM, SAGE II, SCIAMACHY, SMILES, and SMR. In addition, balloon-borne MkIV solar occultation measurements and ground-based Umkehr measurements have been included, as well as two nadir sensors: IASI and SBUV. For each reference data set, bias determination and precision assessment are performed. Better agreement with reference instruments than for the previous data version, V5R_O3_220 (Laeng et al., 2014), is found: the known high bias around the ozone vmr (volume mixing ratio) peak is significantly reduced and the vertical resolution at 35 km has been improved. The agreement with limb and solar occultation reference instruments that have a known small bias vs. ozonesondes is within 7% in the lower and middle stratosphere and 5% in the upper troposphere. Around the ozone vmr peak, the agreement with most of the satellite reference instruments is within 5 %; this bias is as low as 3% for ACE-FTS, MLS, OSIRIS, POAM and SBUV.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Marttila, S, et al. (författare)
  • Methylation status of VTRNA2-1/nc886 is stable across populations, monozygotic twin pairs and in majority of tissues
  • 2022
  • Ingår i: Epigenomics. - : Future Medicine Ltd. - 1750-192X .- 1750-1911. ; 14:18, s. 1105-1124
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims & methods: The aim of this study was to characterize the methylation level of a polymorphically imprinted gene, VTRNA2-1/ nc886, in human populations and somatic tissues.48 datasets, consisting of more than 30 tissues and >30,000 individuals, were used. Results: nc886 methylation status is associated with twin status and ethnic background, but the variation between populations is limited. Monozygotic twin pairs present concordant methylation, whereas ∼30% of dizygotic twin pairs present discordant methylation in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, except in cerebellum and skeletal muscle. Conclusion: The nc886 imprint may be established in the oocyte, and, after implantation, the methylation status is stable, excluding a few specific tissues.
  •  
10.
  • Hultman, J., et al. (författare)
  • Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent
  • 2018
  • Ingår i: Fems Microbiology Ecology. - : Oxford University Press (OUP). - 0168-6496 .- 1574-6941. ; 94:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacE Delta 1 and bla(OXA-58)) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy