SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tan Fangchang) "

Sökning: WFRF:(Tan Fangchang)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • He, Xiaoyu, et al. (författare)
  • Dual-optimization strategy engineered Ti-based metal-organic framework with Fe active sites for highly-selective CO2 photoreduction to formic acid
  • 2023
  • Ingår i: Applied Catalysis B. - : Elsevier BV. - 0926-3373 .- 1873-3883. ; 327
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing CO2 conversion efficiency over metal-organic framework (MOF) based photocatalysts is of great significance to promote the carbon capture and utilization. In this work, a dual-benefit design strategy is deployed in the synthesis of a new two-dimensional Fe/Ti-BPDC MOF photocatalyst with atomically dispersed Fe sites. This catalyst demonstrated an excellent catalytic performance in the visible-light-driven CO2 conversion to HCOOH, achieving a high yield of 703.9 μmol g-1 h-1 at a selectivity greater than 99.7%. This is attributed to the ‘dual-optimization’ achieved by this catalyst to sustain the supply of photogenerated electrons and to effectively activate CO2. Specifically, the Fe/Ti-BPDC catalyst provides a high proportion of effective photogenerated electrons for the CO2 photocatalysis process via a unique electron transfer mechanism. Meanwhile, the strong O/Fe affinity between CO2 and atomically dispersed Fe active sites not only enables a fast CO2 activation, but also dictates the intermediate reaction pathways towards high HCOOH selectivity.
  •  
2.
  • Hu, Yanlei, et al. (författare)
  • Composites of Silk Nanofibrils and Metal-Organic Framework Nanosheets for Fluorescence-Based Sensing and UV Shielding
  • 2023
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society. - 2574-0970. ; 6:7, s. 6046-6055
  • Tidskriftsartikel (refereegranskat)abstract
    • Silk fibroin, a widely used natural biopolymer, presents remarkable flexibility and biodegradability, making it of great interest as a polymer matrix for functional composite materials. Herein, composites of silk nanofibrils and metal-organic framework (MOF) nanosheets were successfully fabricated by a coincubation and coassembly process. Under heat incubation, silk fibroin self-assembled into one-dimensional nanofibrils, while MOF nanosheets simultaneously covered or wrapped on the silk nanofibrils in a water suspension. Transparent composite membranes were obtained from their water suspensions by the solution casting method. The regenerated silk nanofibrils formed a network structure, and the integrated MOF nanosheets (0.1 to 3.0 wt %) endowed the composites with aggregation-induced emission luminogen (AIEgen)-based fluorescence. The fluorescence intensity of the composites was significantly enhanced owing to the interfacial interactions between silk nanofibrils and MOF nanosheets. The composite membranes also offer excellent UV shielding while maintaining optical transparency in the visible spectrum. This work provides an efficient pathway to fabricate luminescent silk protein-based composites for functional materials such as fluorescence sensing and anticounterfeiting.
  •  
3.
  • Koskela, Salla, et al. (författare)
  • Structure and Self-Assembly of Lytic Polysaccharide Monooxygenase-Oxidized Cellulose Nanocrystals
  • 2021
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 9:34, s. 11331-11341
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose-derived nanomaterial building blocks, including cellulose nanocrystals (CNCs), have become increasingly important in sustainable materials development. However, the preparation of CNCs requires hazardous chemicals to introduce surface charges that enable liquid crystalline phase behavior, a key parameter for obtaining self-organized, nanostructured materials from CNCs. Lytic polysaccharide monooxygenases (LPMOs), oxidative enzymes that introduce charged carboxyl groups on their cleavage sites in aqueous reaction conditions, offer an environmentally friendly alternative. In this work, two C1-oxidizing LPMOs from fungus Neurospora crassa, one of which contained a carbohydrate-binding module (CBM), were investigated for CNC preparation. The LPMO-oxidized CNCs shared similar features with chemical-derived CNCs, including colloidal stability and a needle-like morphology with typical dimensions of 7 ± 3 nm in width and 142 ± 57 nm in length for CBM-lacking LPMO-oxidized CNCs. The self-organization of the LPMO-oxidized CNCs was characterized in suspensions and solution cast films. Both LPMO-oxidized CNCs showed electrostatically driven self-organization in aqueous colloidal suspension and pseudo-chiral nematic ordering in solid films. The CBM-lacking LPMO generated a higher carboxyl content (0.70 mmol g–1), leading to a more uniform CNC self-organization, favoring LPMOs without CBMs for CNC production. The obtained results demonstrate production of stable colloidal CNCs with self-assembly by C1-oxidizing LPMOs toward a completely green production of advanced, nanostructured cellulose materials.
  •  
4.
  • Nokling-Eide, Katharina, et al. (författare)
  • Acid preservation of cultivated brown algae Saccharina latissima and Alaria esculenta and characterization of extracted alginate and cellulose
  • 2023
  • Ingår i: Algal Research. - : Elsevier BV. - 2211-9264. ; 71, s. 103057-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cultivated brown algae represent an important potential source of carbohydrate polymers for packaging and other biobased materials. However, their exploitation is currently limited by a short harvest season and a lack of cost-effective and sustainable methods to preserve biopolymer quality. In the present study, cultivated Saccharina latissima (SL) and Alaria esculenta (AE) were preserved with formic acid at 4, 13 and 20 degrees C for up to 16 weeks prior to extraction and characterization of alginate and cellulose. The data show up to 40 % increased yield of alginate from preserved biomass compared with fresh and non-preserved biomass, primarily due to removal of minerals and other soluble compounds during the acid wash. Acid preservation and storage caused a reduction in alginate weight average molecular weight (Mw) that was mainly dependent on storage temperature and to a lesser extent on storage time; storage at 4 degrees C maintained the Mw of alginates at 350-500 kDa. Preservation had no effect on the guluronate block structure of the extracted alginates, but guluronic acid content and block length increased in the non-preserved samples, presumably due to enzymatic degradation of the alginate's M-rich re-gions. Preservation of the seaweed resulted in an increased cellulose yield compared with fresh and non -preserved biomass, again due to the biomass being reduced during acid wash. The molecular weight and crys-tallinity of cellulose were not altered by the process. Altogether our findings demonstrate that acid preservation at low temperatures can effectively stabilize seaweed biomass while preserving alginate and cellulose quality for biomaterials and other applications.
  •  
5.
  • Tan, Fangchang, et al. (författare)
  • Assembly of AIEgen-Based Fluorescent Metal–Organic Framework Nanosheets and Seaweed Cellulose Nanofibrils for Humidity Sensing and UV-Shielding
  • 2022
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 34:28, s. 2201470-
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating synthetic low-dimensional nanomaterials such as metal–organic framework (MOF) nanosheets with a sustainable biopolymer is a promising strategy to endow composites with attractive structural and functional properties for expanded applications. Herein, aggregation-induced-emission luminogen (AIEgen)-based MOF bulk crystals are successfully exfoliated into ultrathin 2D nanosheets. Seaweed cellulose nanofibrils (CNFs) are assembled with low amounts (0.3 to 4.0 wt%) of the 2D nanosheets to generate luminescent composites. The 2D nanosheets are adsorbed onto the CNFs in dilute water suspensions owing to the flexibility of the MOF nanosheets and the high aspect ratio of the CNFs. Transparent films are prepared by solution casting from a water suspension of the CNF-MOF assembly. The fluorescence emission of the composite films is enhanced because of the favored affinity between MOF nanosheets and CNFs. Remarkably, these films demonstrate excellent UV-shielding capacity and high optical transmittance at the visible wavelength range. The composite films also show reversible changes in fluorescence emission intensity in response to ambient humidity. The tensile strength and modulus of the composite films are also enhanced owing to the increased adhesion between CNFs through the adsorbed MOF nanosheets. This work provides a novel pathway to fabricate luminescent CNFs-based composites with tunable optical properties for functional materials. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy