SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tan Yee Joo) "

Sökning: WFRF:(Tan Yee Joo)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hirao, Yuki, et al. (författare)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
3.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
4.
  • Oliveberg, Mikael, et al. (författare)
  • The Changing Nature of the Protein Folding Transition State: Implications for the Shape of the Free-energy Profile for Folding
  • 1998
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 277:4, s. 933-943
  • Tidskriftsartikel (refereegranskat)abstract
    • According to landscape theory proteins do not fold by localised pathways, but find their native conformation by a progressive organisation of an ensemble of partly folded structures down a folding funnel. Here, we use kinetics and protein engineering to investigate the shape of the free-energy profile for two-state folding, which is the macroscopic view of the funnel process for small and rapidly folding proteins. Our experiments are based mainly on structural changes of the transition state of chymotrypsin inhibitor 2 (CI2) upon destabilisation with temperature and GdnHCl. The transition state ensemble of CI2 is a localised feature in the free-energy profile that is sharply higher than the other parts of the activation barrier. The relatively fixed position of the CI2 transition state on the reaction coordinate makes it easy to characterise but contributes also to overshadow the rest of the free-energy profile, the shape of which is inaccessible for analysis. Results from mutants of CI2 and comparison with other two-state proteins, however, point at the possibility that the barrier for folding is generally broad and that localised transition states result from minor ripples in the free-energy profile. Accordingly, variabilities in the folding kinetics may not indicate different folding mechanisms, but could be accounted for by various degrees of ruggedness on top of very broad activation barriers for folding. The concept is attractive since it summarises a wide range of folding data which have previously seemed unrelated. It is also supported by theory. Consistent with experiment, broad barriers predict that new transition state ensembles are exposed upon extreme destabilisation or radical mutations.
  •  
5.
  • Shvartzvald, Yossi, et al. (författare)
  • Spitzer Microlensing Parallax for OGLE-2017-BLG-0896 Reveals a Counter-rotating Low-mass Brown Dwarf
  • 2019
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 157:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinematics of isolated brown dwarfs in the Galaxy, beyond the solar neighborhood, is virtually unknown. Microlensing has the potential to probe this hidden population, as it can measure both the mass and five of the six phase-space coordinates (all except the radial velocity) even of a dark isolated lens. However, the measurements of both the microlens-parallax and finite-source effects are needed in order to recover the full information. Here, we combine the Spitzer satellite parallax measurement with the ground-based light curve, which exhibits strong finite-source effects, of event OGLE-2017-BLG-0896. We find two degenerate solutions for the lens (due to the known satellite-parallax degeneracy), which are consistent with each other except for their proper motion. The lens is an isolated brown dwarf with a mass of either 18 +/- 1 M-J or 20 +/- 1 M-J. This is the lowest isolated-object mass measurement to date, only similar to 45% more massive than the theoretical deuterium-fusion boundary at solar metallicity, which is the common definition of a free-floating planet. The brown dwarf is located at either 3.9 +/- 0.1 kpc or 4.1 +/- 0.1 kpc toward the Galactic bulge, but with proper motion in the opposite direction of disk stars, with one solution suggesting it is moving within the Galactic plane. While it is possibly a halo brown dwarf, it might also represent a different, unknown population.
  •  
6.
  • Silow, Maria, et al. (författare)
  • Formation of Short-Lived Protein Aggregates Directly from the Coil in Two-State Folding
  • 1999
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 38:40, s. 13006-13012
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent results on the 102 residue protein U1A show that protein aggregation is not always slow and irreversible but may take place transiently in refolding studies on a millisecond time scale. In this study we observe a similar aggregation behavior with the classical two-state protein CI2. Since both U1A and CI2 appear to fold directly from the coil at low protein concentrations, it is likely that the aggregates also form directly from the coil. This is in contrast to the behavior of larger multistate proteins where aggregation occurs in connection to "sticky" intermediates.
  •  
7.
  • Tan, Yee-Joo, et al. (författare)
  • The Rate of Isomerisation of Peptidyl-proline Bonds as a Probe for Interactions in the Physiological Denatured State of Chymotrypsin Inhibitor 2
  • 1997
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 269:4, s. 611-622
  • Tidskriftsartikel (refereegranskat)abstract
    • There are four peptidyl-proline bonds in the 64-residue protein chymotrypsin inhibitor 2 (CI2), all of which are in the trans conformation in the native structure. The isomerisation of one or more of these peptidyl-proline bonds to the cis conformation in the denatured state gives rise to heterogeneity, leading to both fast and slow-folding species. The refolding of the fast-folding species, which has all trans peptidyl-proline bonds, is much faster than that of the slow-folding species, which have one or more cis peptidyl-proline bonds. In CI2, the slow-folding species can be classified into two groups by their rates of refolding, temperature-dependence, pH-dependence and [GdmCl]-dependence of the rate constants and the effect of peptidyl-prolyl isomerase on the rate constants. The replacement of Pro6 by Ala removes one of the slow refolding phases, suggesting that the cis peptidyl-Pro6 conformation is solely responsible for one of the slow-folding species. Pro6 is located in a region of the protein where non-random interactions have been found in a series of N-terminal fragments of CI2 (residues 1 to 13, 1 to 25, 1 to 28 and 1 to 40). In addition, NMR studies on a mutant fragment, (1-40)T3A, have confirmed that this non-native interaction is associated with the bulky side-chain of Trp5. The atypical rate of cis to trans isomerisation of the peptidyl-Pro bond is indicative of the presence of a similar hydrophobic cluster in the physiological denatured state of intact CI2.
  •  
8.
  • Wang, Yi, et al. (författare)
  • Structure of Crimean-Congo Hemorrhagic Fever Virus Nucleoprotein: Superhelical Homo-Oligomers and the Role of Caspase-3 Cleavage
  • 2012
  • Ingår i: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 86:22, s. 12294-12303
  • Tidskriftsartikel (refereegranskat)abstract
    • Crimean-Congo hemorrhagic fever, a severe hemorrhagic disease found throughout Africa, Europe, and Asia, is caused by the tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Nairovirus genus of the Bunyaviridae family. Its genome of three single-stranded RNA segments is encapsidated by the nucleocapsid protein (CCHFV N) to form the ribonucleoprotein complex. This ribonucleoprotein complex is required during replication and transcription of the viral genomic RNA. Here, we present the crystal structures of the CCHFV N in two distinct forms, an oligomeric form comprised of double antiparallel superhelices and a monomeric form. The head-to-tail interaction of the stalk region of one CCHFV N subunit with the base of the globular body of the adjacent subunit stabilizes the helical organization of the oligomeric form of CCHFV N. It also masks the conserved caspase-3 cleavage site present at the tip of the stalk region from host cell caspase-3 interaction and cleavage. By incubation with primer-length ssRNAs, we also obtained the crystal structure of CCHFV N in its monomeric form, which is similar to a recently published structure. The conformational change of CCHFV N upon deoligomerization results in the exposure of the caspase-3 cleavage site and subjects CCHFV N to caspase-3 cleavage. Mutations of this cleavage site inhibit cleavage by caspase-3 and result in enhanced viral polymerase activity. Thus, cleavage of CCHFV N by host cell caspase-3 appears to be crucial for controlling viral RNA synthesis and represents an important host defense mechanism against CCHFV infection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy