SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tang Choon Siang) "

Sökning: WFRF:(Tang Choon Siang)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hii, Yien Ling, 1962-, et al. (författare)
  • Climate variability and increase in intensity and magnitude of dengue incidence in Singapore
  • 2009
  • Ingår i: Global Health Action. - : CoAction Publishing. - 1654-9716 .- 1654-9880. ; 2, s. 124-132
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Dengue is currently a major public health burden in Asia Pacific Region. This study aims to establish an association between dengue incidence, mean temperature and precipitation, and further discuss how weather predictors influence the increase in intensity and magnitude of dengue in Singapore during the period 2000-2007.MATERIALS AND METHODS: Weekly dengue incidence data, daily mean temperature and precipitation and the midyear population data in Singapore during 2000-2007 were retrieved and analysed. We employed a time series Poisson regression model including time factors such as time trends, lagged terms of weather predictors, considered autocorrelation, and accounted for changes in population size by offsetting.RESULTS: The weekly mean temperature and cumulative precipitation were statistically significant related to the increases of dengue incidence in Singapore. Our findings showed that dengue incidence increased linearly at time lag of 5-16 and 5-20 weeks succeeding elevated temperature and precipitation, respectively. However, negative association occurred at lag week 17-20 with low weekly mean temperature as well as lag week 1-4 and 17-20 with low cumulative precipitation.DISCUSSION: As Singapore experienced higher weekly mean temperature and cumulative precipitation in the years 2004-2007, our results signified hazardous impacts of climate factors on the increase in intensity and magnitude of dengue cases. The ongoing global climate change might potentially increase the burden of dengue fever infection in near future.
  •  
2.
  • Hii, Yien Ling, et al. (författare)
  • Optimal lead time for dengue forecast
  • 2012
  • Ingår i: PLoS Neglected Tropical Diseases. - : Public Library of Science (PLoS). - 1935-2727 .- 1935-2735. ; 6:10, s. e1848-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: A dengue early warning system aims to prevent a dengue outbreak by providing an accurate prediction of a rise in dengue cases and sufficient time to allow timely decisions and preventive measures to be taken by local authorities. This study seeks to identify the optimal lead time for warning of dengue cases in Singapore given the duration required by a local authority to curb an outbreak.METHODOLOGY AND FINDINGS: We developed a Poisson regression model to analyze relative risks of dengue cases as functions of weekly mean temperature and cumulative rainfall with lag times of 1-5 months using spline functions. We examined the duration of vector control and cluster management in dengue clusters > = 10 cases from 2000 to 2010 and used the information as an indicative window of the time required to mitigate an outbreak. Finally, we assessed the gap between forecast and successful control to determine the optimal timing for issuing an early warning in the study area. Our findings show that increasing weekly mean temperature and cumulative rainfall precede risks of increasing dengue cases by 4-20 and 8-20 weeks, respectively. These lag times provided a forecast window of 1-5 months based on the observed weather data. Based on previous vector control operations, the time needed to curb dengue outbreaks ranged from 1-3 months with a median duration of 2 months. Thus, a dengue early warning forecast given 3 months ahead of the onset of a probable epidemic would give local authorities sufficient time to mitigate an outbreak.CONCLUSIONS: Optimal timing of a dengue forecast increases the functional value of an early warning system and enhances cost-effectiveness of vector control operations in response to forecasted risks. We emphasize the importance of considering the forecast-mitigation gaps in respective study areas when developing a dengue forecasting model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy