SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tang Pengyi) "

Sökning: WFRF:(Tang Pengyi)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Epifani, Mauro, et al. (författare)
  • Solvothermal Synthesis, Gas-Sensing Properties, and Solar Cell-Aided Investigation of TiO2-MoOx Nanocrystals
  • 2017
  • Ingår i: ChemNanoMat. - : John Wiley & Sons. - 2199-692X. ; 3:11, s. 798-807
  • Tidskriftsartikel (refereegranskat)abstract
    • Titania anatase nanocrystals were prepared by sol-gel/solvothermal synthesis in oleic acid at 250 °C, and modified by co-reaction with Mo chloroalkoxide, aimed at investigating the effects on gas-sensing properties induced by tailored nanocrystals surface modification with ultra-thin layers of MoOx species. For the lowest Mo concentration, only anatase nanocrystals were obtained, surface modified by a disordered ultra-thin layer of mainly octahedral MoVI oxide species. For larger Mo concentrations, early MoO2 phase segregation occurred. Upon heat treatment up to 500 °C, the sample with the lowest Mo concentration did not feature any Mo oxide phase segregation, and the surface Mo layer was converted to dense octahedral MoVI oxide. At larger Mo concentrations all segregated MoO2 was converted to MoO3. The two different materials typologies, depending on the Mo concentration, were used for processing gas-sensing devices and tested toward acetone and carbon monoxide, which gave a greatly enhanced response, for all Mo concentrations, to acetone (two orders of magnitude) and carbon monoxide with respect to pure TiO2. For the lowest Mo concentration, dye-sensitized solar cells were also prepared to investigate the influence of anatase surface modification on the electrical transport properties, which showed that the charge transport mainly occurred in the ultra-thin MoOx surface layer.
  •  
2.
  • Ibupoto, Zafar, et al. (författare)
  • MoSx@NiO Composite Nanostructures : An Advanced Nonprecious Catalyst for Hydrogen Evolution Reaction in Alkaline Media
  • 2019
  • Ingår i: Advanced Functional Materials. - : John Wiley & Sons. - 1616-301X .- 1616-3028. ; 29:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The design of the earth‐abundant, nonprecious, efficient, and stable electrocatalysts for efficient hydrogen evolution reaction (HER) in alkaline media is a hot research topic in the field of renewable energies. A heterostructured system composed of MoSx deposited on NiO nanostructures (MoSx@NiO) as a robust catalyst for water splitting is proposed here. NiO nanosponges are applied as cocatalyst for MoS2 in alkaline media. Both NiO and MoS2@NiO composites are prepared by a hydrothermal method. The NiO nanostructures exhibit sponge‐like morphology and are completely covered by the sheet‐like MoS2. The NiO and MoS2 exhibit cubic and hexagonal phases, respectively. In the MoSx@NiO composite, the HER experiment in 1 m KOH electrolyte results in a low overpotential (406 mV) to produce 10 mA cm−2 current density. The Tafel slope for that case is 43 mV per decade, which is the lowest ever achieved for MoS2‐based electrocatalyst in alkaline media. The catalyst is highly stable for at least 13 h, with no decrease in the current density. This simple, cost‐effective, and environmentally friendly methodology can pave the way for exploitation of MoSx@NiO composite catalysts not only for water splitting, but also for other applications such as lithium ion batteries, and fuel cells.
  •  
3.
  • Xie, Haibing, et al. (författare)
  • Decoupling the effects of defects on efficiency and stability through phosphonates in stable halide perovskite solar cells
  • 2021
  • Ingår i: Joule. - : CELL PRESS. - 2542-4351. ; 5:5, s. 1246-1266
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding defects is of paramount importance for the development of stable halide perovskite solar cells (PSCs). However, isolating their distinctive effects on device efficiency and stability is currently a challenge. We report that adding the organic molecule 3-phosphonopropionic acid (H3pp) to the halide perovskite results in unchanged overall optoelectronic performance while having a tremendous effect on device stability. We obtained PSCs with similar to 21% efficiency that retain similar to 100% of the initial efficiency after 1,000 h at the maximum power point under simulated AM1.5G illumination. The strong interaction between the perovskite and the H3pp molecule through two types of hydrogen bonds (H center dot center dot center dot I and O center dot center dot center dot H) leads to shallow point defect passivation that has a significant effect on device stability but not on the non-radiative recombination and device efficiency. We expect that our work will have important implications for the current understanding and advancement of operational PSCs.
  •  
4.
  • Zhao, Lichen, et al. (författare)
  • Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 8:35
  • Tidskriftsartikel (refereegranskat)abstract
    • There exists a considerable density of interaggregate grain boundaries (GBs) and intra-aggregate GBs in polycrystalline perovskites. Mitigation of intra- aggregate GBs is equally notable to that of interaggregate GBs as intra-aggregate GBs can also cause detrimental effects on the photovoltaic performances of perovskite solar cells (PSCs). Here, we demonstrate full-scale GB mitigation ranging from nanoscale intra-aggregate to submicron-scale interaggregate GBs, by modulating the crystallization kinetics using a judiciously designed brominated arylamine trimer. The optimized GB-mitigated perovskite films exhibit reduced nonradiative recombination, and their corresponding mesostructured PSCs show substantially enhanced device efficiency and long-term stability under illumination, humidity, or heat stress. The versatility of our strategy is also verified upon applying it to different categories of PSCs. Our discovery not only specifies a rarely addressed perspective concerning fundamental studies of perovskites at nanoscale but also opens a route to obtain high-quality solution-processed polycrystalline perovskites for high-performance optoelectronic devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy