SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tanner Edmund) "

Sökning: WFRF:(Tanner Edmund)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ibanez, Thomas, et al. (författare)
  • Damage to tropical forests caused by cyclones is driven by wind speed but mediated by topographical exposure and tree characteristics
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world.
  •  
2.
  • Muscarella, Robert, et al. (författare)
  • The global abundance of tree palms
  • 2020
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
3.
  • Shackelford, Nancy, et al. (författare)
  • Isolation predicts compositional change after discrete disturbances in a global meta-study
  • 2017
  • Ingår i: Ecography. - : John Wiley & Sons. - 0906-7590 .- 1600-0587. ; 40:11, s. 1256-1266
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, anthropogenic disturbances are occurring at unprecedented rates and over extensive spatial and temporal scales. Human activities also affect natural disturbances, prompting shifts in their timing and intensities. Thus, there is an urgent need to understand and predict the response of ecosystems to disturbance. In this study, we investigated whether there are general determinants of community response to disturbance across different community types, locations, and disturbance events. We compiled 14 case studies of community response to disturbance from four continents, twelve aquatic and terrestrial ecosystem types, and eight different types of disturbance. We used community compositional differences and species richness to indicate community response. We used mixed-effects modeling to test the relationship between each of these response metrics and four potential explanatory factors: regional species pool size, isolation, number of generations passed, and relative disturbance intensity. We found that compositional similarity was higher between pre- and post-disturbance communities when the disturbed community was connected to adjacent undisturbed habitat. The number of generations that had passed since the disturbance event was a significant, but weak, predictor of community compositional change; two communities were responsible for the observed relationship. We found no significant relationships between the factors we tested and changes in species richness. To our knowledge, this is the first attempt to search for general drivers of community resilience from a diverse set of case studies. The strength of the relationship between compositional change and isolation suggests that it may be informative in resilience research and biodiversity management.
  •  
4.
  • Sheldrake, Merlin, et al. (författare)
  • Arbuscular mycorrhizal fungal community composition is altered by long-term litter removal but not litter addition in a lowland tropical forest
  • 2017
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 214:1, s. 455-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical forest productivity is sustained by the cycling of nutrients through decomposing organic matter. Arbuscular mycorrhizal (AM) fungi play a key role in the nutrition of tropical trees, yet there has been little experimental investigation into the role of AM fungi in nutrient cycling via decomposing organic material in tropical forests. We evaluated the responses of AM fungi in a long-term leaf litter addition and removal experiment in a tropical forest in Panama. We described AM fungal communities using 454-pyrosequencing, quantified the proportion of root length colonised by AM fungi using microscopy, and estimated AM fungal biomass using a lipid biomarker. AM fungal community composition was altered by litter removal but not litter addition. Root colonisation was substantially greater in the superficial organic layer compared with the mineral soil. Overall colonisation was lower in the litter removal treatment, which lacked an organic layer. There was no effect of litter manipulation on the concentration of the AM fungal lipid biomarker in the mineral soil. We hypothesise that reductions in organic matter brought about by litter removal may lead to AM fungi obtaining nutrients from recalcitrant organic or mineral sources in the soil, besides increasing fungal competition for progressively limited resources.
  •  
5.
  • Sheldrake, Merlin, et al. (författare)
  • Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest
  • 2018
  • Ingår i: ISME Journal. - : Springer Science and Business Media LLC. - 1751-7362 .- 1751-7370. ; 12:10, s. 2433-2445
  • Tidskriftsartikel (refereegranskat)abstract
    • Improved understanding of the nutritional ecology of arbuscular mycorrhizal (AM) fungi is important in understanding how tropical forests maintain high productivity on low-fertility soils. Relatively little is known about how AM fungi will respond to changes in nutrient inputs in tropical forests, which hampers our ability to assess how forest productivity will be influenced by anthropogenic change. Here we assessed the influence of long-term inorganic and organic nutrient additions and nutrient depletion on AM fungi, using two adjacent experiments in a lowland tropical forest in Panama. We characterised AM fungal communities in soil and roots using 454-pyrosequencing, and quantified AM fungal abundance using microscopy and a lipid biomarker. Phosphorus and nitrogen addition reduced the abundance of AM fungi to a similar extent, but affected community composition in different ways. Nutrient depletion (removal of leaf litter) had a pronounced effect on AM fungal community composition, affecting nearly as many OTUs as phosphorus addition. The addition of nutrients in organic form (leaf litter) had little effect on any AM fungal parameter. Soil AM fungal communities responded more strongly to changes in nutrient availability than communities in roots. This suggests that the ‘dual niches’ of AM fungi in soil versus roots are structured to different degrees by abiotic environmental filters, and biotic filters imposed by the plant host. Our findings indicate that AM fungal communities are fine-tuned to nutrient regimes, and support future studies aiming to link AM fungal community dynamics with ecosystem function.
  •  
6.
  • Wardle, David, et al. (författare)
  • Coordination of aboveground and belowground responses to local-scale soil fertility differences between two contrasting Jamaican rain forest types
  • 2015
  • Ingår i: Oikos. - : Wiley-Blackwell. - 0030-1299 .- 1600-0706. ; 124:3, s. 285-297
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing interest in understanding how declining soil fertility in the prolonged absence of major disturbance drives ecological processes, or ecosystem retrogression'. However, there are few well characterized study systems for exploring this phenomenon in the tropics, despite tropics occupying over 40% of the Earth's terrestrial surface. We studied two types of montane rain forest in the Blue Mountains of Jamaica that represent distinct stages in ecosystem development, i.e. an earlier stage with shallow organic matter and a late stage with deep organic matter (hereafter mull' and mor' stages). We characterized responses of soil fertility and plant, soil microbial and nematode communities to the transition from mull to mor and whether these responses were coupled. For soil abiotic properties, we found this transition led to lower amounts of both nitrogen (N) and phosphorus (P) and an enhanced N to P ratio. This led to shorter-statured and less diverse forest, and convergence of tree species composition among plots. At the whole community (but not individual species) level foliar and litter N and P diminished from mull to mor, while foliar N to P and resorption efficiency of P relative to N increased, indicating increasing P relative to N limitation. We also found impairment of soil microbes (but not nematodes) and an increasing role of fungi relative to bacteria during the transition. Our results show that retrogression phenomena involving increasing nutrient (notably P) limitation can be important drivers in tropical systems, and are likely to involve aboveground-belowground feedbacks whereby plants produce litter of diminishing quality, impairing soil microbial processes and thus reducing the supply of nutrients from the soil for plant growth. Such feedbacks between plants and the soil, mediated by plant litter and organic matter quality, may serve as major though often overlooked drivers of long term environmental change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy