SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tao Zhensheng) "

Sökning: WFRF:(Tao Zhensheng)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Cong, et al. (författare)
  • Distinguishing attosecond electron-electron scattering and screening in transition metals
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:27, s. E5300-E5307
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron-electron interactions are the fastest processes in materials, occurring on femtosecond to attosecond timescales, depending on the electronic band structure of the material and the excitation energy. Such interactions can play a dominant role in light-induced processes such as nano-enhanced plasmonics and catalysis, light harvesting, or phase transitions. However, to date it has not been possible to experimentally distinguish fundamental electron interactions such as scattering and screening. Here, we use sequences of attosecond pulses to directly measure electron-electron interactions in different bands of different materials with both simple and complex Fermi surfaces. By extracting the time delays associated with photoemission we show that the lifetime of photoelectrons from the d band of Cu are longer by similar to 100 as compared with those from the same band of Ni. We attribute this to the enhanced electron-electron scattering in the unfilled d band of Ni. Using theoretical modeling, we can extract the contributions of electron-electron scattering and screening in different bands of different materials with both simple and complex Fermi surfaces. Our results also show that screening influences high-energy photoelectrons (approximate to 20 eV) significantly less than low-energy photoelectrons. As a result, high-energy photoelectrons can serve as a direct probe of spin-dependent electron-electron scattering by neglecting screening. This can then be applied to quantifying the contribution of electron interactions and screening to low-energy excitations near the Fermi level. The information derived here provides valuable and unique information for a host of quantum materials.
  •  
2.
  • Chen, Cong, et al. (författare)
  • Tomographic reconstruction of circularly polarized high-harmonic fields : 3D attosecond metrology.
  • 2016
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date.
  •  
3.
  • Shi, Xun, et al. (författare)
  • Ultrafast electron calorimetry uncovers a new long-lived metastable state in 1T-TaSe2 mediated by mode-selective electron-phonon coupling
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum materials represent one of the most promising frontiers in the quest for faster, lightweight, energy-efficient technologies. However, their inherent complexity and rich phase landscape make them challenging to understand or manipulate. Here, we present a new ultrafast electron calorimetry technique that can systematically uncover new phases of quantum matter. Using time- and angle-resolved photoemission spectroscopy, we measure the dynamic electron temperature, band structure, and heat capacity. This approach allows us to uncover a new long-lived metastable state in the charge density wave material 1T-TaSe2, which is distinct from all the known equilibrium phases: It is characterized by a substantially reduced effective total heat capacity that is only 30% of the normal value, because of selective electron-phonon coupling to a subset of phonon modes. As a result, less energy is required to melt the charge order and transform the state of the material than under thermal equilibrium conditions.
  •  
4.
  • Tao, Zhensheng, et al. (författare)
  • The nature of non-equilibrium ultrafast demagnetization in ferromagnetic nickel
  • 2019
  • Ingår i: Eleventh International Conference On Information Optics And Photonics (CIOP 2019). - : SPIE. - 9781510631748
  • Konferensbidrag (refereegranskat)abstract
    • It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date the connection between out-of-equilibrium and equilibrium phase transitions was not known, nor how fast the out-of-equilibrium phase transitions can proceed. In this work, by combining time- and angle-resolved photoemission (Tr-ARPES) with time-resolved transverse magneto-optical Kerr (Tr-TMOKE) spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: the spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, while demagnetization and the collapse of the exchange splitting occur on much longer timescales. Third, we find that the transient electron temperature alone dictates the magnetic response. By comparing results obtained from different methods, we show that the critical behaviors are essential for fully explaining the fluence-dependent magnetization dynamics measured using magneto-optical spectroscopy.
  •  
5.
  • Tao, Zhensheng, et al. (författare)
  • The nature of the ultrafast magnetic phase transition in nickel revealed by correlating EUV-MOKE and ARPES spectroscopies
  • 2019
  • Ingår i: XXI International Conference on Ultrafast Phenomena 2018 (UP 2018). - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • By correlating time- and angle-resolved photoemission (Tr-ARPES) and time-resolved transverse- magneto-optical Kerr effect (Tr-TMOKE) measurements, both at extreme ultraviolet (EUV) wavelengths, we uncover the nature of the ultrafast photoinduced magnetic phase transition in Ni. This allows us to explain the ultrafast magnetic response of Ni at all laser fluences - from a small reduction of the magnetization at low laser fluences, to complete quenching at high laser fluences. We provide an alternative explanation to the fluence-dependent recovery timescales commonly observed in ultrafast magneto-optical spectroscopies on ferromagnets: it is due to the bulk-averaging effect and different depths of sample exhibit distinct dynamics, depending on whether a magnetic phase transition is induced. We also show evidence of two competing channels with two distinct timescales in the recovery process, that suggest the presence of coexisting phases in the material.
  •  
6.
  • Tengdin, Phoebe, et al. (författare)
  • Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel
  • 2018
  • Ingår i: Science Advances. - : AMER ASSOC ADVANCEMENT SCIENCE. - 2375-2548. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known. By combining time-and angle-resolved photoemission with time-resolved transverse magneto-optical Kerr spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: The spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, whereas demagnetization and the collapse of the exchange splitting occur on much longer, fluence-independent time scales of similar to 176 fs. Third, we find that the transient electron temperature alone dictates the magnetic response. Our results are important because they connect the out-of-equilibrium material behavior to the strongly coupled equilibrium behavior and uncover a new time scale in the process of ultrafast demagnetization.
  •  
7.
  • Turgut, Emrah, et al. (författare)
  • Stoner versus Heisenberg : Ultrafast exchange reduction and magnon generation during laser-induced demagnetization
  • 2016
  • Ingår i: PHYSICAL REVIEW B. - 2469-9950. ; 94:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding how the electronic band structure of a ferromagnetic material is modified during laser-induced demagnetization on femtosecond time scales has been a long-standing question in condensed matter physics. Here, we use ultrafast high harmonics to measure time-, energy-, and angle-resolved M-edge magnetic asymmetry spectra for Co films after optical pumping to induce ultrafast demagnetization. This provides a complete data set that we can compare with advanced ab initio magneto-optical calculations. Our analysis identifies that the dominant mechanisms contributing to ultrafast demagnetization on time scales up to several picoseconds are a transient reduction in the exchange splitting and the excitation of ultrafast magnons. Surprisingly, we find that the magnon contribution to ultrafast demagnetization is already strong on subpicosecond time scales, while the reduction in exchange splitting persists to several picoseconds.
  •  
8.
  • You, Wenjing, et al. (författare)
  • Revealing the Nature of the Ultrafast Magnetic Phase Transition in Ni by Correlating Extreme Ultraviolet Magneto-Optic and Photoemission Spectroscopies
  • 2018
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 121:7
  • Tidskriftsartikel (refereegranskat)abstract
    • By correlating time-and angle-resolved photoemission and time-resolved transverse magneto-optical Kerr effect measurements, both at extreme ultraviolet wavelengths, we uncover the universal nature of the ultrafast photoinduced magnetic phase transition in Ni. This allows us to explain the ultrafast magnetic response of Ni at all laser fluences-from a small reduction of the magnetization at low laser fluences, to complete quenching at high laser fluences. Both probe methods exhibit the same demagnetization and recovery timescales. The spin system absorbs the energy required to proceed through a magnetic phase transition within 20 fs after the peak of the pump pulse. However, the spectroscopic signatures of demagnetization of the material appear only after approximate to 200 fs and the subsequent recovery of magnetization on timescales ranging from 500 fs to >70 ps. We also provide evidence of two competing channels with two distinct timescales in the recovery process that suggest the presence of coexisting phases in the material.
  •  
9.
  • Zhang, Yingchao, et al. (författare)
  • Coherent modulation of the electron temperature and electron-phonon couplings in a 2D material
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:16, s. 8788-8793
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrashort light pulses can selectively excite charges, spins, and phonons in materials, providing a powerful approach for manipulating their properties. Here we use femtosecond laser pulses to coherently manipulate the electron and phonon distributions, and their couplings, in the charge-density wave (CDW) material 1T-TaSe2. After exciting the material with a femtosecond pulse, fast spatial smearing of the laser-excited electrons launches a coherent lattice breathing mode, which in turn modulates the electron temperature. This finding is in contrast to all previous observations in multiple materials to date, where the electron temperature decreases monotonically via electron-phonon scattering. By tuning the laser fluence, the magnitude of the electron temperature modulation changes from similar to 200 K in the case of weak excitation, to similar to 1,000 K for strong laser excitation. We also observe a phase change of pi in the electron temperature modulation at a critical fluence of 0.7 mJ/cm(2), which suggests a switching of the dominant coupling mechanism between the coherent phonon and electrons. Our approach opens up routes for coherently manipulating the interactions and properties of two-dimensional and other quantum materials using light.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy