SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Taranger G. L.) "

Search: WFRF:(Taranger G. L.)

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Andersson, E., et al. (author)
  • Pituitary gonadotropin and ovarian gonadotropin receptor transcript levels: Seasonal and photoperiod-induced changes in the reproductive physiology of female Atlantic salmon (Salmo salar)
  • 2013
  • In: General and Comparative Endocrinology. - : Elsevier BV. - 0016-6480. ; 191, s. 247-258
  • Journal article (peer-reviewed)abstract
    • In female Atlantic salmon kept at normal light conditions, pituitary follicle-stimulating hormone beta (fshb) transcript levels were transiently elevated one year before spawning, re-increased in February, and remained high during spawning in November and in post-ovulatory fish in December. The first increase in plasma 17b-estradiol (E-2), testosterone (T) and gonadosomatic index (GSI) was recorded in January; E-2 rose up to one month prior to ovulation, while T and GSI kept increasing until ovulation. Pituitary luteinizing hormone beta (lhb) transcript levels peaked at the time of ovulation. Except for transient changes before and after ovulation, ovarian follicle stimulating hormone receptor (fshr) transcript amounts were relatively stable at a high level. By contrast, luteinizing hormone receptor (lhcgr) transcript levels started out low and increased in parallel to GSI and plasma E-2 levels. Exposure to continuous light (LL) induced a bimodal response where maturation was accelerated or arrested. The LL-arrested females showed previtellogenic oil droplet stage follicles or primary yolk follicles only, and fshb and E-2 plasma levels collapsed while fshr increased. The LL-accelerated females showed elevated lhb transcript levels and slightly elevated E-2 levels during early vitellogenesis, and significantly elevated lhcgr E-2 and GSI levels in late vitellogenesis. We conclude that Fsh-dependent signaling stimulates recruitment into and the sustained development through vitellogenesis. Up-regulation of lhcgr gene expression during vitellogenesis may reflect an estrogenic effect, while elevated fshr gene expression following ovulation or during LL-induced arrestment may be associated with ovarian tissue remodeling processes. (C) 2013 Elsevier Inc. All rights reserved.
  •  
9.
  • Benedet Perea, Susana, 1972, et al. (author)
  • Cloning of somatolactin alpha, beta forms and the somatolactin receptor in Atlantic salmon: Seasonal expression profile in pituitary and ovary of maturing female broodstock
  • 2008
  • In: Reproductive Biology and Endocrinology. - : Springer Science and Business Media LLC. - 1477-7827. ; 6:42
  • Journal article (peer-reviewed)abstract
    • Background Somatolactin (Sl) is a fish specific adenohypophyseal peptide hormone related to growth hormone (Gh). Some species, including salmonids, possess two forms: Sl alpha and Sl beta. The somatolactin receptor (slr) is closely related to the growth hormone receptor (ghr). Sl has been ascribed many physiological functions, including a role in sexual maturation. In order to clarify the role of Sl in the sexual maturation of female Atlantic salmon (Salmo salar), the full length cDNAs of slr, Sl alpha and Sl beta were cloned and their expression was studied throughout a seasonal reproductive cycle using real-time quantitative PCR (RTqPCR). Methods Atlantic salmon Sl alpha, Sl beta and slr cDNAs were cloned using a PCR approach. Gene expression of Sl alpha, SL beta and slr was studied using RTqPCR over a 17 month period encompassing pre-vitellogenesis, vitellogenesis, ovulation and post ovulation in salmon females. Histological examination of ovarian samples allowed for the classification according to the degree of follicle maturation into oil drop, primary, secondary or tertiary yolk stage. Results The mature peptide sequences of Sl alpha, Sl beta and slr are highly similar to previously cloned salmonid forms and contained the typical motifs. Phylogenetic analysis of Atlantic salmon Sl alpha and Sl beta shows that these peptides group into the two Sl clades present in some fish species. The Atlantic salmon slr grouped with salmonid slr amongst so-called type I ghr. An increase in pituitary Sl alpha and Sl beta transcripts before and during spawning, with a decrease post-ovulation, and a constant expression level of ovarian slr were observed. There was also a transient increase in Sl alpha and Sl beta in May prior to transfer from seawater to fresh water and ensuing fasting. Conclusion The up-regulation of Sl alpha and Sl beta during vitellogenesis and spawning, with a subsequent decrease post-ovulation, supports a role for Sl during gonadal growth and spawning. Sl could also be involved in calcium/phosphate mobilization associated with vitellogenesis or have a role in energy homeostasis associated with lipolysis during fasting. The up-regulation of both Sl alpha and Sl beta prior to fasting and freshwater transfer, suggests a role for Sl linked to reproduction that may be independent of the maturation induced fasting.
  •  
10.
  • Crespo, D., et al. (author)
  • The initiation of puberty in Atlantic salmon brings about large changes in testicular gene expression that are modulated by the energy status
  • 2019
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 20
  • Journal article (peer-reviewed)abstract
    • BackgroundWhen puberty starts before males reach harvest size, animal welfare and sustainability issues occur in Atlantic salmon (Salmo salar) aquaculture. Hallmarks of male puberty are an increased proliferation activity in the testis and elevated androgen production. Examining transcriptional changes in salmon testis during the transition from immature to maturing testes may help understanding the regulation of puberty, potentially leading to procedures to modulate its start. Since differences in body weight influence, via unknown mechanisms, the chances for entering puberty, we used two feed rations to create body weight differences.ResultsMaturing testes were characterized by an elevated proliferation activity of Sertoli cells and of single undifferentiated spermatogonia. Pituitary gene expression data suggest increased Gnrh receptor and gonadotropin gene expression, potentially responsible for the elevated circulating androgen levels in maturing fish. Transcriptional changes in maturing testes included a broad variety of signaling systems (e.g. Tgf, Wnt, insulin/Igf, nuclear receptors), but also, activation of metabolic pathways such as anaerobic metabolism and protection against ROS. Feed restriction lowered the incidence of puberty. In males maturing despite feed restriction, plasma androgen levels were higher than in maturing fish receiving the full ration. A group of 449 genes that were up-regulated in maturing fully fed fish, was up-regulated more prominently in testis from fish maturing under caloric restriction. Moreover, 421 genes were specifically up-regulated in testes from fish maturing under caloric restriction, including carbon metabolism genes, a pathway relevant for nucleotide biosynthesis and for placing epigenetic marks.ConclusionsUndifferentiated spermatogonia and Sertoli cell populations increased at the beginning of puberty, which was associated with the up-regulation of metabolic pathways (e.g. anaerobic and ROS pathways) known from other stem cell systems. The higher androgen levels in males maturing under caloric restriction may be responsible for the stronger up-regulation of a common set of (449) maturation-associated genes, and the specific up-regulation of another set of (421) genes. The latter opened regulatory and/or metabolic options for initiating puberty despite feed restriction. As a means to reduce the incidence of male puberty in salmon, however, caloric restriction seems unsuitable.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view