SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tatsuno Hideyuki) "

Sökning: WFRF:(Tatsuno Hideyuki)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chábera, Pavel, et al. (författare)
  • A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 543:7647, s. 695-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition-metal complexes are used as photosensitizers1, in light-emitting diodes, for biosensing and in photocatalysis2. A key feature in these applications is excitation from the ground state to a charge-transfer state3,4; the long charge-transfer-state lifetimes typical for complexes of ruthenium5 and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron6 and copper7 being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs6,8,9,10, it remains a formidable scientific challenge11 to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered12 photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers13,14,15. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3′-dimethyl-1,1′-bis(p-tolyl)-4,4′-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(iii) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes4,16,17. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
  •  
2.
  • Curceanu, Catalina, et al. (författare)
  • The modern era of light kaonic atom experiments
  • 2019
  • Ingår i: Reviews of Modern Physics. - 0034-6861. ; 91:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This review covers the modern era of experimental kaonic atom studies, encompassing 20 years of activity, defined by breakthroughs in technological developments which allowed performing a series of long-awaited precision measurements. Kaonic atoms are atomic systems where an electron is replaced by a negatively charged kaon, containing the strange quark, which interacts in the lowest orbits with the nucleus also by the strong interaction. As a result, their study offers the unique opportunity to perform experiments equivalent to scattering at vanishing relative energy. This allows one to study the strong interaction between the antikaon and the nucleon or the nucleus "at threshold," namely, at zero relative energy, without the need of ad hoc extrapolation to zero energy, as in scattering experiments. The fast progress achieved in performing precision light kaonic atom experiments, which also solved long-pending inconsistencies with theoretical calculations generated by old measurements, relies on the development of novel cryogenic targets, x-ray detectors, and the availability of pure and intense charged kaon beams, which propelled an unprecedented progress in the field. Future experiments, based on new undergoing technological developments, will further boost the kaonic atom studies, thus fostering a deeper understanding of the low-energy strong interaction extended to the second family of quarks.
  •  
3.
  • Curceanu, Catalina, et al. (författare)
  • X-ray detectors for kaonic atoms research at DAΦNE
  • 2019
  • Ingår i: Condensed Matter. - : MDPI AG. - 2410-3896. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This article presents the kaonic atom studies performed at the INFN National Laboratory of Frascati (Laboratori Nazionali di Frascati dell’INFN, LNF-INFN) since the opening of this field of research at the DAΦNE collider in early 2000. Significant achievements have been obtained by the DAΦNE Exotic Atom Research (DEAR) and Silicon Drift Detector for Hadronic Atom Research by Timing Applications (SIDDHARTA) experiments on kaonic hydrogen, which have required the development of novel X-ray detectors. The 2019 installation of the new SIDDHARTA-2 experiment to measure kaonic deuterium for the first time has been made possible by further technological advances in X-ray detection.
  •  
4.
  • Ericson, Fredric, et al. (författare)
  • Electronic structure and excited state properties of iron carbene photosensitizers - A combined X-ray absorption and quantum chemical investigation
  • 2017
  • Ingår i: Chemical Physics Letters. - : Elsevier BV. - 0009-2614. ; 683, s. 559-566
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structure and excited state properties of a series of iron carbene photosensitizers are elucidated through a combination of X-ray absorption measurements and density functional theory calculations. The X-ray absorption spectra are discussed with regard to the unusual bonding environment in these carbene complexes, highlighting the difference between ferrous and ferric carbene complexes. The valence electronic structure of the core excited FeIII-3d5 complex is predicted by calculating the properties of a CoIII-3d6 carbene complex using the Z+1 approximation. Insight is gained into the potential of sigma-donating ligands as strategy to tune properties for light harvesting applications.
  •  
5.
  • Fullagar, Wilfred K., et al. (författare)
  • Beating Darwin-Bragg losses in lab-based ultrafast X-ray experiments
  • 2017
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of low temperature thermal detectors for avoiding Darwin-Bragg losses in lab-based ultrafast experiments has begun. An outline of the background of this new development is offered, showing the relevant history and initiative taken by this work.
  •  
6.
  • Kjær, Kasper S., et al. (författare)
  • Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy
  • 2019
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 10:22, s. 5749-5760
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-driven molecular reactions are dictated by the excited state potential energy landscape, depending critically on the location of conical intersections and intersystem crossing points between potential surfaces where non-adiabatic effects govern transition probabilities between distinct electronic states. While ultrafast studies have provided significant insight into electronic excited state reaction dynamics, experimental approaches for identifying and characterizing intersections and seams between electronic states remain highly system dependent. Here we show that for 3d transition metal systems simultaneously recorded X-ray diffuse scattering and X-ray emission spectroscopy at sub-70 femtosecond time-resolution provide a solid experimental foundation for determining the mechanistic details of excited state reactions. In modeling the mechanistic information retrieved from such experiments, it becomes possible to identify the dominant trajectory followed during the excited state cascade and to determine the relevant loci of intersections between states. We illustrate our approach by explicitly mapping parts of the potential energy landscape dictating the light driven low-to-high spin-state transition (spin crossover) of [Fe(2,2′-bipyridine)3]2+, where the strongly coupled nuclear and electronic dynamics have been a source of interest and controversy. We anticipate that simultaneous X-ray diffuse scattering and X-ray emission spectroscopy will provide a valuable approach for mapping the reactive trajectories of light-triggered molecular systems involving 3d transition metals.
  •  
7.
  • Kjær, Kasper S., et al. (författare)
  • Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2′-bipyridine)(CN)4]2-
  • 2018
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 20:6, s. 4238-4249
  • Tidskriftsartikel (refereegranskat)abstract
    • The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2′-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer (MLCT) excited state of [Fe(bpy)(CN)4]2- has a 19 picosecond lifetime and no discernable contribution from metal centered (MC) states in weak Lewis acid solvents, such as dimethyl sulfoxide and acetonitrile.1,2 In the present work, we use the same combination of spectroscopic techniques to measure the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state has triplet (3MC) character, unlike other reported six-coordinate Fe(ii)-centered coordination compounds, which form MC quintet (5MC) states. The solvent dependent changes in excited state non-radiative relaxation for [Fe(bpy)(CN)4]2- allows us to infer the influence of the solvent on the electronic structure of the complex. Furthermore, the robust characterization of the dynamics and optical spectral signatures of the isolated 3MC intermediate provides a strong foundation for identifying 3MC intermediates in the electronic excited state relaxation mechanisms of similar Fe-centered systems being developed for solar applications.
  •  
8.
  • Kunnus, Kristjan, et al. (författare)
  • Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kβ X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.
  •  
9.
  • Sakuma, Fuminori, et al. (författare)
  • K - Pp bound system at J-PARC
  • 2020
  • Ingår i: Proceedings of the 15th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon. - : AIP Publishing. - 0094-243X. - 9780735420083 ; 2249:1
  • Konferensbidrag (refereegranskat)abstract
    • The K̄NN bound system, symbolically denoted as "K-pp", is the simplest K̄-nuclear bound system which has been widely discussed as a consequence of the strongly attractive K̄N interaction in I = 0 channels. Many theoretical works have pointed out the existence of the "K-pp" bound system, but the calculated properties such as the binding energy and the width spread out due to the uncertainty of the K̄N interaction below the K̄+N mass threshold. Experimentally, there are several reports on observation of a "K-pp" candidate with the binding energy of around 100 MeV, however, no definitive evidence was available so far. At J-PARC, we conducted a experimental search for the "K-pp" bound system using K- + 3He reaction at 1.0 GeV/c where the "K-pp" is expected to be directly produced via the (K-, n) reaction. We finally observed a bound state below the K- +p+p mass threshold in the Λpn final state, which can be interpreted as the "K- pp" bound state. The possible existence of the "K- pp" state is discussed from both aspects of production and decay. © 2020 Author(s).
  •  
10.
  • Tatsuno, Hideyuki, et al. (författare)
  • Hot Branching Dynamics in a Light-Harvesting Iron Carbene Complex Revealed by Ultrafast X-ray Emission Spectroscopy
  • 2020
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 59:1, s. 364-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron N-heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub-ps X-ray spectroscopy study of an FeIINHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3MLCT state, from the initially excited 1MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3MC state, in competition with vibrational relaxation and cooling to the relaxed 3MLCT state. The relaxed 3MLCT state then decays much more slowly (7.6 ps) to the 3MC state. The 3MC state is rapidly (2.2 ps) deactivated to the ground state. The 5MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition-metal complexes for similar ultrafast decays to optimize photochemical performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy