SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tavajohi Hassan Kiadeh Naser) "

Sökning: WFRF:(Tavajohi Hassan Kiadeh Naser)

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Orooji, Yasin, et al. (författare)
  • Luminescent film : Biofouling investigation of tetraphenylethylene blended polyethersulfone ultrafiltration membrane
  • 2021
  • Ingår i: Chemosphere. - : Elsevier. - 0045-6535 .- 1879-1298. ; 267
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the huge contribution of membrane-based brine and wastewater purification systems in today’s life, biofouling still affects sustainability of membrane engineering. Aimed at reducing membrane modules wastage, the need to study biofouling monitoring as one of contributory factors stemmed from the short time between initial attachment and irreversible biofoulant adhesion. Hence, a membrane for monitoring is introduced to determine the right cleaning time by using fluorescent sensing as a non-destructive and scalable approach. The classical solid-state emissive fluorophore, tetraphenylethylene (TPE), was introduced as a sustainable, safe and sensitive fluorescent indicator in order to show the potential of the method, and polyethersulfone (PES) and nonsolvent-induced phase separation method, the most popular material and method, are used to fabricate membrane in industry and academia. Since the employed filler has an aggregation-induced emission (AIE) characteristic, it can track the biofouling throughout the operation. The fabricated membranes have certain characterizations (i.e. morphology assessment, flux, antibiogram, flow cytometry, surface free energy, and protein adsorption) which indicate that hybrid membrane with 5 wt % of TPE has identical biofouling activity compared to neat PES membrane and its optimal luminescence properties make it an appropriate candidate for non-destructive and online biofouling monitoring.
  •  
2.
  • Ali, Aamer, et al. (författare)
  • Progress in module design for membrane distillation
  • 2024
  • Ingår i: Desalination. - : Elsevier. - 0011-9164 .- 1873-4464. ; 581
  • Tidskriftsartikel (refereegranskat)abstract
    • There have been tremendous advances in membrane distillation (MD) since the concept was introduced in 1961: new membrane designs and process configurations have emerged, and its commercial viability has been evaluated in several pilot-scale studies. However, its high energy consumption has hindered its commercialization. One of the most promising ways to overcome this obstacle is to develop more energy-efficient membrane modules. The MD research community has therefore developed diverse new module configurations for hollow fiber and flat sheet membranes that increase the thermal energy efficiency of MD by minimizing thermal polarization, increasing mass transfer across the membrane, and improving heat recovery from the condensed vapor. This review summarizes the progress that has been made in the design of hollow fiber and flat sheet membrane modules for MD applications. It begins with a brief introduction to MD and its configurations before describing developments in module fabrication and highlighting key areas where further research is needed.
  •  
3.
  • Chen, Yuqing, et al. (författare)
  • A review of lithium-ion battery safety concerns : the issues, strategies, and testing standards
  • 2021
  • Ingår i: Journal of Energy Chemistry. - : Elsevier. - 2095-4956 .- 2096-885X. ; 59, s. 83-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient and reliable energy storage systems are crucial for our modern society. Lithium-ion batteries (LIBs) with excellent performance are widely used in portable electronics and electric vehicles (EVs), but frequent fires and explosions limit their further and more widespread applications. This review summarizes aspects of LIB safety and discusses the related issues, strategies, and testing standards. Specifically, it begins with a brief introduction to LIB working principles and cell structures, and then provides an overview of the notorious thermal runaway, with an emphasis on the effects of mechanical, electrical, and thermal abuse. The following sections examine strategies for improving cell safety, including approaches through cell chemistry, cooling, and balancing, afterwards describing current safety standards and corresponding tests. The review concludes with insights into potential future developments and the prospects for safer LIBs.
  •  
4.
  • Chen, Yuqing, et al. (författare)
  • Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Low temperatures severely impair the performance of lithium-ion batteries, which demand powerful electrolytes with wide liquidity ranges, facilitated ion diffusion, and lower desolvation energy. The keys lie in establishing mild interactions between Li+ and solvent molecules internally, which are hard to achieve in commercial ethylene-carbonate based electrolytes. Herein, we tailor the solvation structure with low-ε solvent-dominated coordination, and unlock ethylene-carbonate via electronegativity regulation of carbonyl oxygen. The modified electrolyte exhibits high ion conductivity (1.46 mS·cm−1) at −90 °C, and remains liquid at −110 °C. Consequently, 4.5 V graphite-based pouch cells achieve ~98% capacity over 200 cycles at −10 °C without lithium dendrite. These cells also retain ~60% of their room-temperature discharge capacity at −70 °C, and miraculously retain discharge functionality even at ~−100 °C after being fully charged at 25 °C. This strategy of disrupting solvation dominance of ethylene-carbonate through molecular charge engineering, opens new avenues for advanced electrolyte design.
  •  
5.
  • Du, Hao, et al. (författare)
  • Easily recyclable lithium-ion batteries : Recycling-oriented cathode design using highly soluble LiFeMnPO4 with a water-soluble binder
  • 2023
  • Ingår i: Battery Energy. - : John Wiley & Sons. - 2768-1688 .- 2768-1696. ; 2:4, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Recycling lithium-ion batteries (LIBs) is fundamental for resource recovery, reducing energy consumption, decreasing emissions, and minimizing environmental risks. The inherited properties of materials and design are not commonly attributed to the complexity of recycling LIBs and their effects on the recycling process. The state-of-the-art battery recycling methodology consequently suffers from poor recycling efficiency and high consumption from issues with the cathode and the binder material. As a feasibility study, high-energy-density cathode material LiFeMnPO4 with a water-soluble polyacrylic acid (PAA) binder is extracted with dilute hydrochloric acid at room temperature under oxidant-free conditions. The cathode is wholly leached with high purity and is suitable for reuse. The cathode is easily separated from its constituent materials and reduces material and energy consumption during recycling by 20% and 7%, respectively. This strategy is utilized to fabricate recyclable-oriented LiFeMnPO4/graphite LIBs with a PAA binder and carbon paper current collector. Finally, the limitation of the solubility of the binder is discussed in terms of recycling. This research hopefully provides guidance for recycling-oriented design for the circular economy of the LIB industry.
  •  
6.
  • Du, Hao, et al. (författare)
  • Recovery of lithium salt from spent lithium-ion battery by less polar solvent wash and water extraction
  • 2023
  • Ingår i: Carbon Neutralization. - : John Wiley & Sons. - 2769-3325 .- 2769-3325. ; 2:4, s. 416-424
  • Tidskriftsartikel (refereegranskat)abstract
    • The lithium hexafluorophosphate (LiPF6) in spent lithium-ion batteries (LIBs) is a potentially valuable resource and a significant environmental pollutant. Unfortunately, most of the LiPF6 in a spent LIB is difficult to extract because the electrolyte is strongly adsorbed by the cathode, anode, and separator. Storing extracted electrolyte is also challenging because it contains LiPF6, which promotes the decomposition of the solvent. Here we show that electrolytes in spent LIBs can be collected by a less polar solvent dimethyl carbonate (DMC) wash, and LiPF6 can be concentrated by simple aqueous extraction by lowering ethylene carbonate (EC) content in the recycled electrolyte. Due to the similar dielectric constant of EC and water, reducing the content of EC in LIB electrolytes, or even eliminating it, facilitates the separation of water and electrolyte, thus enabling the lithium salts in the electrolyte to be separated from the organic solvent. The lithium salt extracting efficiency achieved in this way can be as high as 99.8%, and fluorine and phosphorus of LiPF6 can be fixed in the form of stable metal fluoride and phosphate by hydrothermal method. The same strategy can be used in industrial waste electrolyte recycling by diluting the waste with DMC and extracting the resulting solution with water. This work thus reveals a new route for waste electrolyte treatment and will also support the development of advanced EC-free electrolytes for high-performance, safe, and easily recyclable LIBs.
  •  
7.
  • Essalhi, Mohamed, et al. (författare)
  • 10 - Thermo-osmosis
  • 2021. - 1
  • Ingår i: Osmosis Engineering. - : Elsevier. - 9780128210161 ; , s. 279-312
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The existence of nonisothermal transport of liquids through a gelatin membrane was first described by Lippmann in 1907, and 5 years later, it was investigated by Aubert in more detail using membranes of gelatin pig’s bladder, parchment paper and viscose. In this phenomenon, there is no liquid/vapor phase transition and it is known as thermo-osmosis (TO) or thermal osmosis (TO). Lippmann also observed TO in air, obviously without prior knowledge of the work of Feddersen and Reynolds. However, at that time the lack of theory on irreversible processes prevented the progress towards understanding this phenomenon.
  •  
8.
  • Essalhi, Mohamed, et al. (författare)
  • Desalination by direct contact membrane distillation using mixed matrix electrospun nanofibrous membranes with carbon-based nanofillers : a strategic improvement
  • 2021
  • Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 426
  • Tidskriftsartikel (refereegranskat)abstract
    • Robust hydrophobic and superhydrophobic mixed matrix electrospun nanofibrous membranes (MM-ENMs) have been prepared from low- and high- molecular weight polyvinylidene fluoride with either multi-walled carbon nanotubes or graphene oxide nanofillers (0.05–0.5 wt%). The polymer solutions' properties, including their electrical conductivity, viscosity, and surface tension, were determined and used to guide the design of single-, dual-, and triple-layered MM-ENMs combining layers with different hydrophobic character. All MM-ENMs were subsequently prepared and characterized in terms of their morphology, hydrophobicity, mechanical properties, and direct contact membrane distillation (DCMD) performance. A thinner hydrophobic layer with a thicker hydrophilic support layer in dual-layered MM-ENMs reduced water vapor transport resistance and improved DCMD performance relative to single-layer MM-ENMs. Conversely, placing an intermediate hydrophilic layer between two hydrophobic layers in triple-layered MM-ENMs promoted water condensation (water pocket formation) and thus reduced DCMD performance. Over 10 h DCMD, the best-performing dual-layered MM-ENM allowed ultra-high permeate fluxes of up to 74.7 kg/m2 h while maintaining a stable permeate electrical conductivity of around 7.63 μS/cm and a salt (NaCl) rejection factor of up to 99.995% when operated with a feed temperature of 80°C, a permeate temperature of 20°C, and a feed solution containing NaCl at a concentration of 30 g/L.
  •  
9.
  • Essalhi, Mohamed, et al. (författare)
  • Improvement of nanostructured electrospun membranes for desalination by membrane distillation technology
  • 2021
  • Ingår i: Desalination. - : Elsevier. - 0011-9164 .- 1873-4464. ; 510
  • Tidskriftsartikel (refereegranskat)abstract
    • A systematic study is carried out to determine the optimum electrospinning preparation condition to prepare an adequate electrospun nanofibrous membrane (ENM) for direct contact membrane distillation (DCMD). A structural properties investigation of ENM was carried out because of the significant impact of its architectural structure, nanofiber diameter, inter-fiber space and ENM thickness, on DCMD performance. The morphology, hydrophobicity, mechanical properties, crystallinity and DCMD desalination were investigated. A long-term DCMD experiment (100h) was carried out using 30 g/L NaCl aqueous solution, both in the feed and permeate side of the optimum ENM membrane to evaluate its potential to produce drinkable water in case of lack of distilled water, for instance in a remote area, emergency situation, and/or portable system. In this case, drinkable water could be produced after 28 h with a permeate flux of 57.5 kg/m2.h and a salt rejection factor greater than 99.9%. Another long-term DCMD experiment (65 h) was conducted using 30 g/L NaCl aquesous solution as feed but at a higher temperature and distilled water as permeate to evaluate the desalination stability, wettability and scaling of the optimum ENM. A permeate flux of 58.5 kg/m2.h was obtained with a salt rejection factor greater than 99.9%.
  •  
10.
  • Essalhi, Mohamed, et al. (författare)
  • Polyvinylidene fluoride membrane formation using carbon dioxide as a non-solvent additive for nuclear wastewater decontamination
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 446:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyvinylidene fluoride (PVDF) membranes were prepared by phase inversion in the most commonly used solvents for membrane manufacture, with CO2 as a non-solvent additive. The effects of changing the polymer concentration (10, 12.5 and 15% by weight), the type of solvent (NMP, DMAc and DMF) and the coagulation bath with three levels of CO2 concentration on the phase inversion process, as well as the phase diagram, morphology and transport properties of the membranes were studied. The best performing membranes were used to desalinate salt aqueous solutions and decontaminated simulated nuclear wastewater by membrane distillation using two configurations (DCMD and AGMD). All selected membranes showed high rejection with acceptable permeate fluxes reaching an infinite decontamination factor. The proposed approach of this novel idea of using CO2 dissolved in water as a coagulation medium in the field of membranes avoids the increase of the harmful effect on the environment caused by the addition of a harsh non-solvent to the coagulation bath. It constitutes a beneficial use of carbon dioxide that reduces the negative environmental impact of membrane manufacturing and represents a decisive step towards its sustainability. Furthermore, this study highlights the potential benefits of using these membranes in DM for desalination and treatment of simulated nuclear wastewater.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy