SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tebaldini S.) "

Sökning: WFRF:(Tebaldini S.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Quegan, S., et al. (författare)
  • The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space
  • 2019
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257. ; 227, s. 44-60
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary objective of the European Space Agency's 7th Earth Explorer mission, BIOMASS, is to determine the worldwide distribution of forest above-ground biomass (AGB) in order to reduce the major uncertainties in calculations of carbon stocks and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with Land Use Change, forest degradation and forest regrowth. To meet this objective it will carry, for the first time in space, a fully polarimetric P-band synthetic aperture radar (SAR). Three main products will be provided: global maps of both AGB and forest height, with a spatial resolution of 200 m, and maps of severe forest disturbance at 50 m resolution (where “global” is to be understood as subject to Space Object tracking radar restrictions). After launch in 2022, there will be a 3-month commissioning phase, followed by a 14-month phase during which there will be global coverage by SAR tomography. In the succeeding interferometric phase, global polarimetric interferometry Pol-InSAR coverage will be achieved every 7 months up to the end of the 5-year mission. Both Pol-InSAR and TomoSAR will be used to eliminate scattering from the ground (both direct and double bounce backscatter) in forests. In dense tropical forests AGB can then be estimated from the remaining volume scattering using non-linear inversion of a backscattering model. Airborne campaigns in the tropics also indicate that AGB is highly correlated with the backscatter from around 30 m above the ground, as measured by tomography. In contrast, double bounce scattering appears to carry important information about the AGB of boreal forests, so ground cancellation may not be appropriate and the best approach for such forests remains to be finalized. Several methods to exploit these new data in carbon cycle calculations have already been demonstrated. In addition, major mutual gains will be made by combining BIOMASS data with data from other missions that will measure forest biomass, structure, height and change, including the NASA Global Ecosystem Dynamics Investigation lidar deployed on the International Space Station after its launch in December 2018, and the NASA-ISRO NISAR L- and S-band SAR, due for launch in 2022. More generally, space-based measurements of biomass are a core component of a carbon cycle observation and modelling strategy developed by the Group on Earth Observations. Secondary objectives of the mission include imaging of sub-surface geological structures in arid environments, generation of a true Digital Terrain Model without biases caused by forest cover, and measurement of glacier and icesheet velocities. In addition, the operations needed for ionospheric correction of the data will allow very sensitive estimates of ionospheric Total Electron Content and its changes along the dawn-dusk orbit of the mission.
  •  
2.
  • Banda, Francesco, et al. (författare)
  • The BIOMASS level 2 prototype processor: Design and experimental results of above-ground biomass estimation
  • 2020
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • BIOMASS is ESA's seventh Earth Explorer mission, scheduled for launch in 2022. The satellite will be the first P-band SAR sensor in space and will be operated in fully polarimetric interferometric and tomographic modes. The mission aim is to map forest above-ground biomass (AGB), forest height (FH) and severe forest disturbance (FD) globally with a particular focus on tropical forests. This paper presents the algorithms developed to estimate these biophysical parameters from the BIOMASS level 1 SAR measurements and their implementation in the BIOMASS level 2 prototype processor with a focus on the AGB product. The AGB product retrieval uses a physically-based inversion model, using ground-canceled level 1 data as input. The FH product retrieval applies a classical PolInSAR inversion, based on the Random Volume over Ground Model (RVOG). The FD product will provide an indication of where significant changes occurred within the forest, based on the statistical properties of SAR data. We test the AGB retrieval using modified airborne P-Band data from the AfriSAR and TropiSAR campaigns together with reference data from LiDAR-based AGB maps and plot-based ground measurements. For AGB estimation based on data from a single heading, comparison with reference data yields relative Root Mean Square Difference (RMSD) values mostly between 20% and 30%. Combining different headings in the estimation process significantly improves the AGB retrieval to slightly less than 20%. The experimental results indicate that the implemented retrieval scheme provides robust results that are within mission requirements.
  •  
3.
  • d'Alessandro, M. Mariotti, et al. (författare)
  • Interferometric Ground Notching of SAR Images for Estimating Forest Above Ground Biomass
  • 2018
  • Ingår i: International Geoscience and Remote Sensing Symposium (IGARSS). - 9781538671504 ; , s. 8797-8800
  • Konferensbidrag (refereegranskat)abstract
    • The effectiveness of SAR tomography in estimating forest Above Ground Biomass (AGB) has been repeatedly demonstrated in the recent years. For tropical rain-forests, analysis from the Paracou test site reveals that the best results are achieved when the backscattered power coming from 30m above the ground is considered. As suggested in previous papers, the most likely reason is that ground scattering acts as a disturbing factor for forest biomass retrieval, as it depends on a number of parameters (like topography, moisture), that do not relate to forest biomass. In this paper we further test this hypothesis by proposing the concept of interferometric ground notching. By taking the difference between two phase calibrated, ground-steered, SAR SLC images a third image is obtained where ground scattering contributions are canceled out, hence the name ground-notched SLC. Results indicate that ground-notched data can effectively retain the features of vegetation-only scattering, including its polarimetric signature and correlation with AGB.
  •  
4.
  • Papathanassiou, Kostas, et al. (författare)
  • Forest Applications
  • 2021
  • Ingår i: Remote Sensing and Digital Image Processing. - Cham : Springer International Publishing. - 2215-1842 .- 1567-3200. ; , s. 59-117
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The application of polarimetric Synthetic Aperture Radar (SAR) to forest observation for mapping, classification and parameter estimation (especially biomass) has a relatively long history. The radar penetration through forest volume, and hence the multi-layer nature of scattering models, make fully polarimetric data the observation space enabling a robust and full inversion of such models. A critical advance came with the introduction of polarimetric SAR interferometry, where polarimetry provides the parameter diversity, while the interferometric baseline proves a user-defined entropy control as well as spatial separation of scattering components, together with their location in the third dimension (height). Finally, the availability of multiple baselines leads to the full 3-D imaging of forest volumes through TomoSAR, the quality of which is again greatly enhanced by the inclusion of polarimetry. The objective of this Chapter is to review applications of SAR polarimetry, polarimetric interferometry and tomography to forest mapping and classification, height estimation, 3-D structure characterization and biomass estimation. This review includes not only models and algorithms, but it also contains a large number of experimental results in different test sites and forest types, and from airborne and space borne SAR data at different frequencies.
  •  
5.
  • Soja, Maciej, 1985, et al. (författare)
  • Mapping above-ground biomass in tropical forests with ground-cancelled P-band SAR and limited reference data
  • 2021
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper introduces the CASINO (CAnopy backscatter estimation, Subsampling, and Inhibited Nonlinear Optimisation) algorithm for above-ground biomass (AGB) estimation in tropical forests using P-band (435 MHz) synthetic aperture radar (SAR) data. The algorithm has been implemented in a prototype processor for European Space Agency's (ESA's) 7th Earth Explorer Mission BIOMASS, scheduled for launch in late 2022. CASINO employs an interferometric ground cancellation technique to estimate canopy backscatter (CB) intensity. A power law model (PLM) is then used to model the dependence of CB on AGB for a large number of systematically distributed SAR data samples and a small number of calibration areas with a known AGB. The PLM parameters and AGB for the samples are estimated simultaneously within pre-defined intervals using nonlinear minimisation of a cost function. The performance of CASINO is assessed over six tropical forest sites on two continents: two in French Guiana, South America and four in Gabon, Africa, using SAR data acquired during airborne ESA campaigns and processed to simulate BIOMASS acquisitions. Multiple tests with only two randomly selected calibration areas with AGB > 100 t/ha are conducted to assess AGB estimation performance given limited reference data. At 2.25 ha scale and using a single flight heading, the root-mean-square difference (RMSD) is ≤ 27% for at least 50% of all tests in each test site and using as reference AGB maps derived from airborne laser scanning data. An improvement is observed when two flight headings are used in combination. The most consistent AGB estimation (lowest RMSD variation across different calibration sets) is observed for test sites with a large AGB interval and average AGB around 200–250 t/ha. The most challenging conditions are in areas with AGB < 200 t/ha and large topographic variations. A comparison with 142 1 ha plots distributed across all six test sites and with AGB estimated from in situ measurements gives an RMSD of 20% (66 t/ha).
  •  
6.
  • Tebaldini, S., et al. (författare)
  • Biomass Level-2 Products - Part II: Processing Schemes and AGB Estimation Results from Campaign Data
  • 2021
  • Ingår i: International Geoscience and Remote Sensing Symposium (IGARSS). ; 2021-July, s. 783-786
  • Konferensbidrag (refereegranskat)abstract
    • Scheduled for launch in 2023, ESA's seventh Earth Explorer Mission, BIOMASS, will carry the first P-band synthetic aperture radar (SAR) to be flown in space, to gather fully polarimetric acquisitions over forested areas worldwide in interferometric and tomographic modes. This paper presents the algorithms developed to estimate biophysical parameters from BIOMASS measurements and their implementation in the BIOMASS level 2 (L2) prototype processor. The L2 processor will generate global maps of forest Above Ground Biomass (AGB), Forest Height (FH), Forest disturbance (FD). Accurate generation of these products requires the L2 processor to be closely inter-linked with the BIOMASS interferometric processor, in order to produce phase-calibrated interferometric stacks, retrieve sub-canopy terrain topography, and generate a 3D representation of forest structure by use of SAR tomography. AGB estimation results are here shown using BIOMASS-like acquisitions derived from campaign data acquired over six tropical forests in South America and Equatorial Africa.
  •  
7.
  • Ulander, Lars, 1962, et al. (författare)
  • BIOMASS LEVEL-2 PRODUCTS - PART I: RATIONALE AND APPLICATIONS
  • 2021
  • Ingår i: International Geoscience and Remote Sensing Symposium (IGARSS). ; 2021-July, s. 779-782
  • Konferensbidrag (refereegranskat)abstract
    • This paper describes the rationale and development of the estimation techniques for the level-2 data products of the European Space Agency's 7th Earth Explorer BIOMASS mission. BIOMASS is planned for launch in 2023 and will carry the first-ever P-band synthetic aperture radar (SAR) onboard a satellite. It has been designed to produce consistent global maps of the Earth's forests during a nominal five-year lifetime. Fully polarimetric SAR data will be collected and the satellite orbit will be selected for repeat-pass interferometry and tomography in separated mission phases. Mission requirements call for three level-2 data products: above-ground biomass, forest height and forest disturbance. The paper also discusses the expected limitations of the estimation techniques and remaining problems to be addressed.
  •  
8.
  • Blomberg, Erik, 1987, et al. (författare)
  • Evaluating P-Band TomoSAR for Biomass Retrieval in Boreal Forest
  • 2021
  • Ingår i: IEEE Transactions on Geoscience and Remote Sensing. - 0196-2892 .- 1558-0644. ; 59:5, s. 3793-3804
  • Tidskriftsartikel (refereegranskat)abstract
    • P-band synthetic aperture radar (SAR) is sensitive to above-ground biomass (AGB) but retrieval accuracy has been shown to deteriorate in topographic areas. In boreal forest, the signal penetrates through the canopy to interact with the ground producing variations in backscatter depending on ground topography, forest structure, and soil moisture. Tomographic processing of multiple SAR images Tomographic SAR (TomoSAR) provides information about the vertical backscatter distribution. This article evaluates the use of P-band TomoSAR data to improve AGB retrievals from backscattered intensity by suppressing the backscattered signal from the ground. This approach can be used even when the tomographic resolution is insufficient to resolve the vertical backscatter profile. The analysis is based on P-band data from two campaigns: BioSAR-1 (2007) in Remingstorp, southern Sweden, and BioSAR-2 (2008) in Krycklan (KR), northern Sweden. BioSAR airborne data were also processed to correspond as closely as possible to future BIOMASS TomoSAR acquisitions, with BioSAR-2-based results shown. A power law AGB model using volumetric HV polarized backscatter performs best in KR, with training residual root mean-squared error (RMSE) of 30%-36% (27-33 t/ha) for airborne data and 38%-39% for simulated BIOMASS data. Airborne TomoSAR data suggest that both vertical and horizontal tomographic resolution are of importance and that it is possible to greatly reduce AGB retrieval bias when compared with airborne P-band SAR backscatter intensity-based retrievals. A lack of significant ground slopes in Remningstorp reduces the benefit of using TomoSAR data which performs similar to retrievals based solely on P-band SAR backscatter intensity.
  •  
9.
  • Blomberg, Erik, 1987, et al. (författare)
  • Evaluating spaceborne L-band pol tomo SAR for forest biomass retrieval based on airborne SAR data
  • 2018
  • Ingår i: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR. - 2197-4403. ; 2018-June, s. 1405-1407
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents an evaluation of L-band tomographic synthetic-aperture radar (TomoSAR) data for forest biomass retrievals. Tomograms are processed from multiple synthetic-aperture radar (SAR) data sets from the Krycklan forest site, located in the north and south of Sweden. Tomographic performance is matched to possible future spaceborne SAR configurations such as SAOCOM-CS. Ivol, the integrated volumetric backscatter between 10 m and 30 m, is found to result in improved biomass retrievals compared to those based on slope corrected SAR intensity γ0from the original airborne E-SAR system.
  •  
10.
  • Blomberg, Erik, 1987, et al. (författare)
  • Forest Biomass Retrieval from L-Band SAR Using Tomographic Ground Backscatter Removal
  • 2018
  • Ingår i: IEEE Geoscience and Remote Sensing Letters. - 1558-0571 .- 1545-598X. ; 15:7, s. 1030-1034
  • Tidskriftsartikel (refereegranskat)abstract
    • A tomographic synthetic aperture radar (TomoSAR) represents a possible route to improved retrievals of forest parameters. Simulated orbital L-band TomoSAR data corresponding to the proposed Satellites for Observation and Communications-Companion Satellite (SAOCOM-CS) mission (1.275 GHz) are evaluated for retrieval of above-ground biomass in boreal forest. L-band data and biomass measurements, collected at the Krycklan test site in northern Sweden as part of the BioSAR 2008 campaign, are used to compare biomass retrievals from SAOCOM-CS to those based on SAOCOM SAR data. Both data sets are in turn compared with the corresponding airborne case, as represented by experimental airborne SAR through processing of the original SAR data. TomoSAR retrievals use a model involving a logarithmic transform of the volumetric backscatter intensity, Ivol, defined as the total backscatter originating between 10 and 30 m above ground. SAR retrievals are obtained with slope-compensated intensity γ0using the same model. It is concluded that tomography using SAOCOM-CS represents an improvement over an airborne SAR imagery, resulting in biomass retrievals from a single polarization (HH) having a 26%-30% root-mean-square error with a little to no impact from the look direction or the local topography.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy