SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tegenkamp C.) "

Sökning: WFRF:(Tegenkamp C.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lippert, G., et al. (författare)
  • Molecular beam epitaxy of graphene on mica
  • 2012
  • Ingår i: Physica status solidi. B, Basic research. - : Wiley. - 0370-1972 .- 1521-3951. ; 249:12, s. 2507-2510
  • Tidskriftsartikel (refereegranskat)abstract
    • Realization of graphene devices is often hindered by the fact that the known layer growth methods do not meet the requirements of the device fabrication in silicon mainstream technology. For example, the relatively straightforward method of decomposition of hexagonal SiC is not CMOS-compatible due to the high-thermal budget it requires [Moon et al., IEEE Electron Device Lett. 31, 260 (2010)]. Techniques based on layer transfer are restricted because of the uncertainty of residual metal contaminants, particles, and structural defects. Of interest is thus a method that would allow one to grow a graphene film directly in the device area where graphene is needed. Production of large area graphene is not necessarily required in this case, but high quality of the film and metal-free growth on an insulating substrate at temperatures below 1000 degrees C are important requirements. We demonstrate direct growth of defect-free graphene on insulators at moderate temperatures by molecular beam epitaxy. The quality of the graphene was probed by high-resolution Raman spectroscopy, indicating a negligible density of defects. The spectra are compared with those from graphene flakes mechanically exfoliated from native graphite onto mica. These results are combined with insights from density functional theory calculations. A model of graphene growth on mica and similar substrates is proposed.
  •  
2.
  • Aprojanz, J., et al. (författare)
  • High-Mobility Epitaxial Graphene on Ge/Si(100) Substrates
  • 2020
  • Ingår i: ACS applied materials & interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:38, s. 43065-43072
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene was shown to reveal intriguing properties of its relativistic two-dimensional electron gas; however, its implementation to microelectronic applications is missing to date. In this work, we present a comprehensive study of epitaxial graphene on technologically relevant and in a standard CMOS process achievable Ge(100) epilayers grown on Si(100) substrates. Crystalline graphene monolayer structures were grown by means of chemical vapor deposition (CVD). Using angle-resolved photoemission spectroscopy and in situ surface transport measurements, we demonstrate their metallic character both in momentum and real space. Despite numerous crystalline imperfections, e.g., grain boundaries and strong corrugation, as compared to epitaxial graphene on SiC(0001), charge carrier mobilities of 1 × 104 cm2/Vs were obtained at room temperature, which is a result of the quasi-charge neutrality within the graphene monolayers on germanium and not dependent on the presence of an interface oxide. The interface roughness due to the facet structure of the Ge(100) epilayer, formed during the CVD growth of graphene, can be reduced via subsequent in situ annealing up to 850 °C coming along with an increase in the mobility by 30%. The formation of a Ge(100)-(2 × 1) structure demonstrates the weak interaction and effective delamination of graphene from the Ge/Si(100) substrate.
  •  
3.
  • Baringhaus, J., et al. (författare)
  • Bipolar gating of epitaxial graphene by intercalation of Ge
  • 2014
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 104:26
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the ambivalent behavior of Ge intercalation is studied by means of scanning tunneling microscopy and spectroscopy as well as local 4-point probe transport measurements. In quantitative agreement with angle-resolved photoemission experiments, both p-and n-type doped graphene areas and their doping level were identified by local spectroscopy. The p-doped areas appear higher by 2 angstrom with respect to the n-doped areas suggesting incorporation of thicker Ge-layers accompanied by a modified coupling to the initial SiC-surface. Furthermore, the sheet resistance was measured on each of the patches separately. The intrinsic imbalance between the carrier types in the different areas is well reflected by the transport study. The process of intercalation does not affect the transport properties in comparison to pristine graphene pointing to a sufficient homogeneity of the decoupled graphene layer. Transport measurements across chemically gated pn-junctions reveal increased resistances, possibly due to enlarged tunneling barriers. (C) 2014 AIP Publishing LLC.
  •  
4.
  • Schädlich, Philip, et al. (författare)
  • Domain Boundary Formation Within an Intercalated Pb Monolayer Featuring Charge-Neutral Epitaxial Graphene
  • 2023
  • Ingår i: Advanced Materials Interfaces. - 2196-7350. ; 10:27
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthesis of new graphene-based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x-ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten-fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely-packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge-neutral monolayer graphene. The observation of a long-ranged ((Formula presented.)) reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled.
  •  
5.
  • Stöhr, Alexander, et al. (författare)
  • Graphene Ribbon Growth on Structured Silicon Carbide
  • 2017
  • Ingår i: Annalen der Physik. - : Wiley. - 0003-3804. ; 529:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Structured Silicon Carbide was proposed to be an ideal template for the production of arrays of edge specific graphene nanoribbons (GNRs), which could be used as a base material for graphene transistors. We prepared periodic arrays of nanoscaled stripe-mesas on SiC surfaces using electron beam lithography and reactive ion etching. Subsequent epitaxial graphene growth by annealing is differentiated between the basal-plane mesas and the faceting stripe walls as monitored by means of atomic force microscopy (AFM). Microscopic low energy electron diffraction (μ-LEED) revealed that the graphene ribbons on the facetted mesa side walls grow in epitaxial relation to the basal-plane graphene with an armchair orientation at the facet edges. The π-band system of the ribbons exhibits linear bands with a Dirac like shape corresponding to monolayer graphene as identified by angle-resolved photoemission spectroscopy (ARPES).
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy