SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Teh Irvin) "

Sökning: WFRF:(Teh Irvin)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Afzali, Maryam, et al. (författare)
  • In vivo diffusion MRI of the human heart using a 300 mT/m gradient system
  • 2024
  • Ingår i: Magnetic Resonance in Medicine. - 0740-3194.
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: This work reports for the first time on the implementation and application of cardiac diffusion-weighted MRI on a Connectom MR scanner with a maximum gradient strength of 300 mT/m. It evaluates the benefits of the increased gradient performance for the investigation of the myocardial microstructure. Methods: Cardiac diffusion-weighted imaging (DWI) experiments were performed on 10 healthy volunteers using a spin-echo sequence with up to second- and third-order motion compensation ((Formula presented.) and (Formula presented.)) and (Formula presented.), and 1000 (Formula presented.) (twice the (Formula presented.) commonly used on clinical scanners). Mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA), and secondary eigenvector angle (E2A) were calculated for b = [100, 450] (Formula presented.) and b = [100, 1000] (Formula presented.) for both (Formula presented.) and (Formula presented.). Results: The MD values with (Formula presented.) are slightly higher than with (Formula presented.) with (Formula presented.) for (Formula presented.) and (Formula presented.) for (Formula presented.). A reduction in MD is observed by increasing the (Formula presented.) from 450 to 1000 (Formula presented.) ((Formula presented.) for (Formula presented.) and (Formula presented.) for (Formula presented.)). The difference between FA, E2A, and HA was not significant in different schemes ((Formula presented.)). Conclusion: This work demonstrates cardiac DWI in vivo with higher b-value and higher order of motion compensated diffusion gradient waveforms than is commonly used. Increasing the motion compensation order from (Formula presented.) to (Formula presented.) and the maximum b-value from 450 to 1000 (Formula presented.) affected the MD values but FA and the angular metrics (HA and E2A) remained unchanged. Our work paves the way for cardiac DWI on the next-generation MR scanners with high-performance gradient systems.
  •  
2.
  • Hardie, Claire, et al. (författare)
  • Diagnostic accuracy of magnetic resonance imaging for nerve injury in obstetric brachial plexus injury : protocol for systematic review and meta-analysis
  • 2022
  • Ingår i: Systematic Reviews. - : BioMed Central. - 2046-4053. ; 11:1
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Early and accurate clinical diagnosis of the extent of obstetric brachial plexus injury (OBPI) is challenging. The current gold standard for delineating the nerve injury is surgical exploration, and synchronous reconstruction is performed if indicated. Magnetic resonance imaging (MRI) is a non-invasive method of assessing the anatomy and severity of nerve injury in OBPI but the diagnostic accuracy is unclear. The primary objective of this review is to determine the diagnostic accuracy of MRI in comparison to surgical brachial plexus exploration for detecting root avulsion in children under 5 with OBPI. The secondary objectives are to determine its’ diagnostic accuracy for detecting nerve abnormality and detecting pseudomeningocele(s) in this group.Methods: This review will be conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA).We will include studies reporting the accuracy of MRI (index test) compared to surgical exploration (reference standard) in detecting any of the three target conditions (root avulsion, any nerve abnormality and pseudomeningocele) in children under five with OBPI. Case reports and studies where the number of true positives, false positives, true negatives and false negatives cannot be derived will be excluded. We plan to search PubMed, Embase and CENTRAL for relevant studies from database inception to 15 June 2022. We will also search grey literature (medRxiv, bioRxiv and Google Scholar) and perform forward and backward citation chasing. Screening and full-text assessment of eligibility will be conducted by two independent reviewers, who will then both extract the relevant data. The QUADAS-2 tool will be used to assess methodological quality and risk of bias of included studies by two reviewers independently. The following test characteristics for the target conditions will be extracted: true positives, false positives, true negatives and false negatives. Estimates of sensitivity and specificity with 95% confidence intervals will be shown in forest plots for each study. If appropriate, summary sensitivities and specificities for target conditions will be obtained via meta-analyses using a bivariate model.Discussion: This study will aim to clarify the diagnostic accuracy of MRI for detecting nerve injury in OBPI and define its clinical role. Systematic review registration: PROSPERO CRD42021267629.
  •  
3.
  • Lasič, Samo, et al. (författare)
  • Motion-compensated b-tensor encoding for in vivo cardiac diffusion-weighted imaging
  • 2020
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 33:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Motion is a major confound in diffusion-weighted imaging (DWI) in the body, and it is a common cause of image artefacts. The effects are particularly severe in cardiac applications, due to the nonrigid cyclical deformation of the myocardium. Spin echo-based DWI commonly employs gradient moment-nulling techniques to desensitise the acquisition to velocity and acceleration, ie, nulling gradient moments up to the 2nd order (M2-nulled). However, current M2-nulled DWI scans are limited to encode diffusion along a single direction at a time. We propose a method for designing b-tensors of arbitrary shapes, including planar, spherical, prolate and oblate tensors, while nulling gradient moments up to the 2nd order and beyond. The design strategy comprises initialising the diffusion encoding gradients in two encoding blocks about the refocusing pulse, followed by appropriate scaling and rotation, which further enables nulling undesired effects of concomitant gradients. Proof-of-concept assessment of in vivo mean diffusivity (MD) was performed using linear and spherical tensor encoding (LTE and STE, respectively) in the hearts of five healthy volunteers. The results of the M2-nulled STE showed that (a) the sequence was robust to cardiac motion, and (b) MD was higher than that acquired using standard M2-nulled LTE, where diffusion-weighting was applied in three orthogonal directions, which may be attributed to the presence of restricted diffusion and microscopic diffusion anisotropy. Provided adequate signal-to-noise ratio, STE could significantly shorten estimation of MD compared with the conventional LTE approach. Importantly, our theoretical analysis and the proposed gradient waveform design may be useful in microstructure imaging beyond diffusion tensor imaging where the effects of motion must be suppressed.
  •  
4.
  • Lasič, Samo, et al. (författare)
  • Stay on the Beat With Tensor-Valued Encoding: Time-Dependent Diffusion and Cell Size Estimation in ex vivo Heart
  • 2022
  • Ingår i: Frontiers in Physics. - : Frontiers Media SA. - 2296-424X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffusion encoding with free gradient waveforms can provide increased microstructural specificity in heterogeneous tissues compared to conventional encoding approaches. This is achieved by considering specific aspects of encoding, such as b-tensor shape, sensitivity to bulk motion and to time-dependent diffusion (TDD). In tensor-valued encoding, different b-tensor shapes are used, such as in linear tensor encoding (LTE) or spherical tensor encoding (STE). STE can be employed for estimation of mean diffusivity (MD) or in combination with LTE to probe average microscopic anisotropy unconfounded by orientation dispersion. While tensor-valued encoding has been successfully applied in the brain and other organs, its potential and limitations have not yet been fully explored in cardiac applications. To avoid artefacts due to motion, which are particularly challenging in cardiac imaging, arbitrary b-tensors can be designed with motion compensation, i.e. gradient moment nulling, while also nulling the adverse effects of concomitant gradients. Encoding waveforms with varying degrees of motion compensation may however have significantly different sensitivities to TDD. This effect can be prominent in tissues with relatively large cell sizes such as in the heart and can be used advantageously to provide further tissue information. To account for TDD in tensor-valued encoding, the interplay between asynchronous gradients simultaneously applied along different directions needs to be considered. As the first step toward in vivo cardiac applications, our overarching goal was to explore the feasibility of acceleration compensated tensor-valued encoding on preclinical and clinical scanners ex vivo. We have demonstrated strong and predictable variation of MD due to TDD in mouse and pig hearts using a wide range of LTE and STE with progressively increasing degrees of motion compensation. Our preliminary data from acceleration compensated STE and LTE at high b-values, attainable on the preclinical scanner, indicate that TDD needs to be considered in experiments with varying b-tensor shapes. We have presented a novel theoretical framework, which enables cell size estimation, helps to elucidate limitations and provides a basis for further optimizations of experiments probing both mean diffusivity and microscopic anisotropy in the heart.
  •  
5.
  • Szczepankiewicz, Filip, et al. (författare)
  • Motion-compensated gradient waveforms for tensor-valued diffusion encoding by constrained numerical optimization
  • 2021
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 85:4, s. 2117-2126
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Diffusion-weighted MRI is sensitive to incoherent tissue motion, which may confound the measured signal and subsequent analysis. We propose a "motion-compensated" gradient waveform design for tensor-valued diffusion encoding that negates the effects bulk motion and incoherent motion in the ballistic regime.METHODS: Motion compensation was achieved by constraining the magnitude of gradient waveform moment vectors. The constraint was incorporated into a numerical optimization framework, along with existing constraints that account for b-tensor shape, hardware restrictions, and concomitant field gradients. We evaluated the efficacy of encoding and motion compensation in simulations, and we demonstrated the approach by linear and planar b-tensor encoding in a healthy heart in vivo.RESULTS: The optimization framework produced asymmetric motion-compensated waveforms that yielded b-tensors of arbitrary shape with improved efficiency compared with previous designs for tensor-valued encoding, and equivalent efficiency to previous designs for linear (conventional) encoding. Technical feasibility was demonstrated in the heart in vivo, showing vastly improved data quality when using motion compensation. The optimization framework is available online in open source.CONCLUSION: Our gradient waveform design is both more flexible and efficient than previous methods, facilitating tensor-valued diffusion encoding in tissues in which motion would otherwise confound the signal. The proposed design exploits asymmetric encoding times, a single refocusing pulse or multiple refocusing pulses, and integrates compensation for concomitant gradient effects throughout the imaging volume.
  •  
6.
  • Teh, Irvin, et al. (författare)
  • Cardiac q-space trajectory imaging by motion-compensated tensor-valued diffusion encoding in human heart in vivo
  • 2023
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 0740-3194 .- 1522-2594. ; 90:1, s. 150-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Tensor-valued diffusion encoding can probe more specific features of tissue microstructure than what is available by conventional diffusion weighting. In this work, we investigate the technical feasibility of tensor-valued diffusion encoding at high b-values with q-space trajectory imaging (QTI) analysis, in the human heart in vivo. Methods: Ten healthy volunteers were scanned on a 3T scanner. We designed time-optimal gradient waveforms for tensor-valued diffusion encoding (linear and planar) with second-order motion compensation. Data were analyzed with QTI. Normal values and repeatability were investigated for the mean diffusivity (MD), fractional anisotropy (FA), microscopic FA (μFA), isotropic, anisotropic and total mean kurtosis (MKi, MKa, and MKt), and orientation coherence (Cc). A phantom, consisting of two fiber blocks at adjustable angles, was used to evaluate sensitivity of parameters to orientation dispersion and diffusion time. Results: QTI data in the left ventricular myocardium were MD = 1.62 ± 0.07 μm2/ms, FA = 0.31 ± 0.03, μFA = 0.43 ± 0.07, MKa = 0.20 ± 0.07, MKi = 0.13 ± 0.03, MKt = 0.33 ± 0.09, and Cc = 0.56 ± 0.22 (mean ± SD across subjects). Phantom experiments showed that FA depends on orientation dispersion, whereas μFA was insensitive to this effect. Conclusion: We demonstrated the first tensor-valued diffusion encoding and QTI analysis in the heart in vivo, along with first measurements of myocardial μFA, MKi, MKa, and Cc. The methodology is technically feasible and provides promising novel biomarkers for myocardial tissue characterization.
  •  
7.
  • Wade, Ryckie G., et al. (författare)
  • Diffusion Tensor Imaging for Diagnosing Root Avulsions in Traumatic Adult Brachial Plexus Injuries : A Proof-of-Concept Study
  • 2020
  • Ingår i: Frontiers in Surgery. - : Frontiers Media S.A.. - 2296-875X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-sectional MRI has modest diagnostic accuracy for diagnosing traumatic brachial plexus root avulsions. Consequently, patients either undergo major exploratory surgery or months of surveillance to determine if and what nerve reconstruction is needed. This study aimed to develop a diffusion tensor imaging (DTI) protocol at 3 Tesla to visualize normal roots and identify traumatic root avulsions of the brachial plexus. Seven healthy adults and 12 adults with known (operatively explored) unilateral traumatic brachial plexus root avulsions were scanned. DTI was acquired using a single-shot echo-planar imaging sequence at 3 Tesla. The brachial plexus was visualized by deterministic tractography. Fractional anisotropy (FA) and mean diffusivity (MD) were calculated for injured and avulsed roots in the lateral recesses of the vertebral foramen. Compared to healthy nerves roots, the FA of avulsed nerve roots was lower (mean difference 0.1 [95% CI 0.07, 0.13]; p < 0.001) and the MD was greater (mean difference 0.32 × 10−3 mm2/s [95% CI 0.11, 0.53]; p < 0.001). Deterministic tractography reconstructed both normal roots and root avulsions of the brachial plexus; the negative-predictive value for at least one root avulsion was 100% (95% CI 78, 100). Therefore, DTI might help visualize both normal and injured roots of the brachial plexus aided by tractography. The precision of this technique and how it relates to neural microstructure will be further investigated in a prospective diagnostic accuracy study of patients with acute brachial plexus injuries.
  •  
8.
  • Wade, Ryckie G., et al. (författare)
  • Diffusion tensor imaging of the roots of the brachial plexus : a systematic review and meta-analysis of normative values
  • 2020
  • Ingår i: Clinical and Transational Imaging. - : Springer. - 2281-5872 .- 2281-7565. ; 8, s. 419-431
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Diffusion tensor magnetic resonance imaging (DTI) characterises tissue microstructure and provides proxy measures of myelination, axon diameter, fibre density and organisation. This may be valuable in the assessment of the roots of the brachial plexus in health and disease. Therefore, there is a need to define the normal DTI values.Methods: The literature was systematically searched for studies of asymptomatic adults who underwent DTI of the brachial plexus. Participant characteristics, scanning protocols, and measurements of the fractional anisotropy (FA) and mean diffusivity (MD) of each spinal root were extracted by two independent review authors. Generalised linear modelling was used to estimate the effect of experimental conditions on the FA and MD. Meta-analysis of root-level estimates was performed using Cohen’s method with random effects.Results: Nine articles, describing 316 adults (1:1 male:female) of mean age 35 years (SD 6) were included. Increments of ten diffusion sensitising gradient directions reduced the mean FA by 0.01 (95% CI 0.01, 0.03). Each year of life reduced the mean MD by 0.03 × 10–3 mm2/s (95% CI 0.01, 0.04). At 3-T, the pooled mean FA of the roots was 0.36 (95% CI 0.34, 0.38; I2 98%). The pooled mean MD of the roots was 1.51 × 10–3 mm2/s (95% CI 1.45, 1.56; I2 99%).Conclusions: The FA and MD of the roots of the brachial plexus vary according to experimental conditions and participant factors. We provide summary estimates of the normative values in different conditions which may be valuable to researchers and clinicians alike.
  •  
9.
  • Wade, Ryckie G., et al. (författare)
  • Fractional anisotropy thresholding for deterministic tractography of the roots of the brachial plexus
  • 2021
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffusion tensor imaging (DTI) metrics, such as the fractional anisotropy (FA) and estimates of diffusivity are sensitive to the microstructure of peripheral nerves and may be displayed as tractograms. However, the ideal conditions for tractography of the roots of the brachial plexus are unclear, which represents the rationale for this study. Ten healthy adults were scanned using a Siemens Prisma (3T) and single-shot echo-planar imaging (b-value 0/1000 s/mm2, 64 directions, 2.5 mm3 with 4 averages; repeated in opposing phase encoding directions). Susceptibility correction and tractography were performed in DSI Studio by two independent raters. The effect of FA thresholding at increments of 0.01 (from 0.04 to 0.10) were tested. The mean FA varied between subjects by 2% (95% CI 1%, 3%). FA thresholds of 0.04, 0.05 and 0.06 all propagated 96% of tracts representing the roots; thresholding at 0.07 yielded 4% fewer tracts (p = 0.2), 0.08 yielded 11% fewer tracts (p = 0.008), 0.09 yielded 15% fewer tracts (p = 0.001) and 0.1 yielded 20% fewer tracts (p < 0.001). There was < 0.1% inter-rater variability in the measured FA and 99% agreement for tractography (κ = 0.92, p < 0.001). The fractional anisotropy thresholds required to generate tractograms of the roots of the brachial plexus appears to be lower than those used in the brain. We provide estimates of the probability of generating true tracts for each spinal nerve root of the brachial plexus, at different fractional anisotropy thresholds.
  •  
10.
  • Waterton, John C., et al. (författare)
  • Repeatability and reproducibility of longitudinal relaxation rate in 12 small-animal MRI systems
  • 2019
  • Ingår i: Magnetic Resonance Imaging. - : Elsevier BV. - 1873-5894 .- 0730-725X. ; 59, s. 121-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Many translational MR biomarkers derive from measurements of the water proton longitudinal relaxation rate R 1 , but evidence for between-site reproducibility of R 1 in small-animal MRI is lacking. Objective: To assess R 1 repeatability and multi-site reproducibility in phantoms for preclinical MRI. Methods: R 1 was measured by saturation recovery in 2% agarose phantoms with five nickel chloride concentrations in 12 magnets at 5 field strengths in 11 centres on two different occasions within 1–13 days. R 1 was analysed in three different regions of interest, giving 360 measurements in total. Root-mean-square repeatability and reproducibility coefficients of variation (CoV) were calculated. Propagation of reproducibility errors into 21 translational MR measurements and biomarkers was estimated. Relaxivities were calculated. Dynamic signal stability was also measured. Results: CoV for day-to-day repeatability (N = 180 regions of interest) was 2.34% and for between-centre reproducibility (N = 9 centres) was 1.43%. Mostly, these do not propagate to biologically significant between-centre error, although a few R 1 -based MR biomarkers were found to be quite sensitive even to such small errors in R 1 , notably in myocardial fibrosis, in white matter, and in oxygen-enhanced MRI. The relaxivity of aqueous Ni 2+ in 2% agarose varied between 0.66 s −1 mM −1 at 3 T and 0.94 s −1 mM −1 at 11.7T. Interpretation: While several factors affect the reproducibility of R 1 -based MR biomarkers measured preclinically, between-centre propagation of errors arising from intrinsic equipment irreproducibility should in most cases be small. However, in a few specific cases exceptional efforts might be required to ensure R 1 -reproducibility.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy