SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Teramura Alan H.) "

Sökning: WFRF:(Teramura Alan H.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Andrady, Anthony, et al. (författare)
  • Environmental effects of ozone depletion and its interaction with climate change: Progress report 2007
  • 2008
  • Ingår i: Photochemical and Photobiological Sciences. - : Springer Science and Business Media LLC. - 1474-9092 .- 1474-905X. ; 7:1, s. 15-27
  • Forskningsöversikt (refereegranskat)abstract
    • This year theMontreal Protocol celebrates its 20th Anniversary. In September 1987, 24 countries signed the ‘Montreal Protocol on Substances that Deplete the Ozone Layer’. Today 191 countries have signed and have met strict commitments on phasing out of ozone depleting substances with the result that a 95% reduction of these substances has been achieved. The Montreal Protocol has also contributed to slowing the rate of global climate change, since most of the ozone depleting substances are also effective greenhouse gases. Even though much has been achieved, the future of the stratospheric ozone layer relies on full compliance of the Montreal Protocol by all countries for the remaining substances, including methyl bromide, as well as strict monitoring of potential risks from the production of substitute chemicals. Also the ozone depleting substances existing in banks and equipment need special attention to prevent their release to the stratosphere. Since many of the ozone depleting substances already in the atmosphere are long-lived, recovery cannot be immediate and present projections estimate a return to pre-1980 levels by 2050 to 2075. It has also been predicted that the interactions of the effects of the ozone layer and that of other climate change factors will become increasingly important.
  •  
3.
  • Andrady, Anthony, et al. (författare)
  • Environmental effects of ozone depletion and its interactions with climate
  • 2009
  • Ingår i: Photochemical and Photobiological Sciences. - 1474-9092. ; 8:1, s. 13-22
  • Forskningsöversikt (refereegranskat)abstract
    • After the enthusiastic celebration of the 20th Anniversary of the Montreal Protocol on Substances that Deplete the Ozone Layer in 2007, the work for the protection of the ozone layer continues. The Environmental Effects Assessment Panel is one of the three expert panels within theMontreal Protocol. This “EEAP” deals with the increase of the UV irradiance on the Earth’s surface and its effects on human health, animals, plants, biogeochemistry, air quality and materials. For the past few years, interactions of ozone depletion with climate change have also been considered. It has become clear that the environmental problems will be long-lasting. In spite of the fact that the worldwide production of ozone depleting chemicals has already been reduced by 95%, the environmental disturbances are expected to persist for about the next half a century, even if the protective work is actively continued, and completed. The latest full report was published in Photochem. Photobiol. Sci., 2007, 6, 201–332, and the last progress report in Photochem. Photobiol. Sci., 2008, 7, 15–27. The next full report on environmental effects is scheduled for the year 2010. The present progress report 2008 is one of the short interim reports, appearing annually.
  •  
4.
  • Caldwell, Martyn M., et al. (författare)
  • Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors
  • 2003
  • Ingår i: Photochemical and Photobiological Sciences. - : Springer Science and Business Media LLC. - 1474-9092 .- 1474-905X. ; 2:1, s. 29-38
  • Forskningsöversikt (refereegranskat)abstract
    • Based on research to date, we can state some expectations about terrestrial ecosystem response as several elements of global climate change develop in coming decades. Higher plant species will vary considerably in their response to elevated UV-B radiation, but the most common general effects are reductions in height of plants, decreased shoot mass if ozone reduction is severe, increased quantities of some phenolics in plant tissues and, perhaps, reductions in foliage area. In some cases, the common growth responses may be lessened by increasing CO2 concentrations. However, changes in chemistry of plant tissues will generally not be reversed by elevated CO2. Among other things, changes in plant tissue chemistry induced by enhanced UV-B may reduce consumption of plant tissues by insects and other herbivores, although occasionally consumption may be increased. Pathogen attack on plants may be increased or decreased as a consequence of elevated UV-B, in combination with other climatic changes. This may be affected both by alterations in plant chemistry and direct damage to some pathogens. Water limitation may decrease the sensitivity of some agricultural plants to UV-B, but for vegetation in other habitats, this may not apply. With global warming, the repair of some types of UV damage may be improved, but several other interactions between warming and enhanced UV-B may occur. For example, even though warming may lead to fewer killing frosts, with enhanced UV-B and elevated CO2 levels, some plant species may have increased sensitivity to frost damage. Originally published by the United Nations Environment Programme (UNEP) in "Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2002 Assessment". See http://www.unep.org/ozone/Publications/index.asp and http://www.earthprint.com/show.htm
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy