SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ternes Thomas) "

Sökning: WFRF:(Ternes Thomas)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maier, Michael P., et al. (författare)
  • Exploring Trends of C and N Isotope Fractionation to Trace Transformation Reactions of Diclofenac in Natural and Engineered Systems
  • 2016
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 50:20, s. 10933-10942
  • Tidskriftsartikel (refereegranskat)abstract
    • Although diclofenac ranks among the most frequently detected pharmaceuticals in the urban water cycle, its environmental transformation reactions remain imperfectly understood. Biodegradation-induced changes in N-15/N-14 ratios (epsilon(N) = -7.1 parts per thousand +/- 0.4 parts per thousand) have indicated that compound-specific isotope analysis (CSIA) may detect diclofenac degradation. This singular observation warrants exploration for further transformation reactions. The present study surveys carbon and nitrogen isotope fractionation in other environmental and engineered transformation reactions of diclofenac. While carbon isotope fractionation was generally small, observed nitrogen isotope fractionation in degradation by MnO2 (epsilon(N) = -7.3 parts per thousand +/- 0.3 parts per thousand), photolysis (epsilon(N) = +1.9 parts per thousand +/- 0.1 parts per thousand), and ozonation (epsilon(N) = +1.5 parts per thousand +/- 0.2 parts per thousand) revealed distinct trends for different oxidative transformation reactions. The small, secondary isotope effect associated with ozonation suggests an attack of O-3 in a molecular position distant from the N atom. Model reactants for outer-sphere single electron transfer generated large inverse nitrogen isotope fractionation (epsilon(N) = +5.7 parts per thousand +/- 0.3 parts per thousand), ruling out this mechanism for biodegradation and transformation by MnO2. In a river model, isotope fractionation-derived degradation estimates agreed well with concentration mass balances, providing a proof-of-principle validation for assessing micropollutant degradation in river sediment. Our study highlights the prospect of combining CSIA with transformation product analysis for a better assessment of transformation reactions within the environmental life of diclofenac.
  •  
2.
  • Falås, Per, et al. (författare)
  • Transformation, CO2 formation and uptake of four organic micropollutants by carrier-attached microorganisms
  • 2018
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354. ; 141, s. 405-416
  • Tidskriftsartikel (refereegranskat)abstract
    • A tiered process was developed to assess the transformation, CO2 formation and uptake of four organic micropollutants by carrier-attached microorganisms from two municipal wastewater treatment plants. At the first tier, primary transformation of ibuprofen, naproxen, diclofenac, and mecoprop by carrier-attached microorganisms was shown by the dissipation of the target compounds and the formation of five transformation products using LC-tandem MS. At the second tier, the microbial cleavage of the four organic micropollutants was confirmed with 14C-labeled micropollutants through liquid scintillation counting of the 14CO2 formed. At the third tier, microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH) was used to screen carrier-attached microorganisms for uptake of the four radiolabeled micropollutants. Results from the MAR-FISH screening indicated that only a small fraction of the microbial community (≤1‰) was involved in the uptake of the radiolabeled micropollutants and that the responsible microorganisms differed between the compounds. At the fourth tier, the microbial community structure of the carrier-attached biofilms was analyzed by 16S rRNA gene amplicon sequencing. The sequencing results showed that the MAR-FISH screening targeted ∼80% of the microbial community and that several taxonomic families within the FISH-probed populations with MAR-positive signals (i.e. Firmicutes, Gammaproteobacteria, and Deltaproteobacteria) were present in both biofilms. From the broader perspective of organic micropollutant removal in biological wastewater treatment, the MAR-FISH results of this study indicate a high degree of microbial substrate specialization that could explain differences in transformation rates and patterns between micropollutants and microbial communities.
  •  
3.
  • Gariazzo, Stefano, et al. (författare)
  • Neutrino mass and mass ordering : no conclusive evidence for normal ordering
  • 2022
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 2022:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The extraction of the neutrino mass ordering is one of the major challenges in particle physics and cosmology, not only for its implications for a fundamental theory of mass generation in nature, but also for its decisive role in the scale of future neutrinoless double beta decay experimental searches. It has been recently claimed that current oscillation, beta decay and cosmological limits on the different observables describing the neutrino mass parameter space provide robust decisive Bayesian evidence in favor of the normal ordering of the neutrino mass spectrum [1]. We further investigate these strong claims using a rich and wide phenomenology, with different sampling techniques of the neutrino parameter space. Contrary to the findings of Jimenez et al. [1], no decisive evidence for the normal mass ordering is found. Neutrino mass ordering analyses must rely on priors and parameterizations that are ordering-agnostic: robust results should be regarded as those in which the preference for the normal neutrino mass ordering is driven exclusively by the data, while we find a difference of up to a factor of 33 in the Bayes factors among the different priors and parameterizations exploited here. An ordering-agnostic prior would be represented by the case of parameterizations sampling over the two mass splittings and a mass scale, or those sampling over the individual neutrino masses via normal prior distributions only. In this regard, we show that the current significance in favor of the normal mass ordering should be taken as 2.7σ (i.e. moderate evidence), mostly driven by neutrino oscillation data. Let us stress that, while current data favor NO only mildly, we do not exclude the possibility that this may change in the future. Eventually, upcoming oscillation and cosmological data may (or may not) lead to a more significant exclusion of IO.
  •  
4.
  • Hermes, Nina, et al. (författare)
  • Ozonation of Sitagliptin : Removal Kinetics and Elucidation of Oxidative Transformation Products
  • 2020
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 54:17, s. 10588-10598
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the increasing use and high excretion rates, high quantities of the antidiabetic drug sitagliptin (STG) enter wastewater treatment plants (WWTPs). In conventional biological treatment, only a moderate removal was achieved, and thus, STG can be detected in WWTP effluents with concentrations in the higher ng/L range. Ozonation is a widely discussed technique for advanced wastewater treatment. In lab-scale experiments, STG showed pH-dependent removal kinetics with a maximum apparent rate constant of k ∼1 × 104 M-1 s-1 at pH ≥ 9. With an apparent rate constant of kO3 = (1.8 ± 0.7) × 103 M-1 s-1 at pH 8, STG can be considered to be readily degraded by ozonation of WWTP effluents. Ozone attacks the primary amine moiety of STG, leading to nitro-STG (TP 437) (the primary amine moiety is transformed into a nitro group). Furthermore, a diketone (TP 406) was formed, which can be further degraded by ozone. Lab-scale and pilot-scale experiments on ozonation of WWTP effluents confirmed that the ozone attack of STG was incomplete even at high ozone doses of 1.7 and 0.9 mg O3/mg DOC, respectively. These experiments confirmed that nitro-STG was formed as the main TP in the wastewater matrix. Two other TPs, TP 421c and TP 206b, were also detected, albeit with low intensities.
  •  
5.
  • Nürenberg, Gudrun, et al. (författare)
  • Nontarget analysis : A new tool for the evaluation of wastewater processes
  • 2019
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354. ; 163
  • Tidskriftsartikel (refereegranskat)abstract
    • Strategies to determine the removal efficiency of micropollutants in wastewater treatment plants (WWTPs) are widely discussed. Especially the evaluation of the potential benefit of further advanced treatment steps such as an additional tertiary treatment based on ozonation or activated carbon have come into focus. Such evaluation strategies are often based on the removal behavior of known micropollutants via target or suspected analysis. The utilization of nontarget analysis is considered to lead to a more comprehensive picture as also unknown or not expected micropollutants are analyzed. Here, the results of an evaluation via target and nontarget analysis were compared for biological treatment (BT) processes of eleven full-scale WWTPs and three different post-treatments (PTs): one sand filter (SF) and two granular activated carbon (GAC) filters. The similarity of the determined removals from target and nontarget analysis of the BTs increased significantly by excluding easily degradable “features” from the nontarget evaluation. A similar ranking of the removal trends for the BTs could also be achieved by comparing this new subset of nontarget features with a set of nine readily to moderately biodegradable micropollutants. This observation suggests that a performance ranking of BTs based either on target or nontarget analysis is plausible. In contrast to the BTs, the evaluation of the three PTs revealed that the difference of feature removal between SF and the two GACs was small, but large for the target analytes with substantially higher removal effciencies for the GACs compared to the SF. In addition to the removal behavior, the nontarget analysis provided further information about the number and quantity of transformation products (TPs) in the effluent from the BTs. For all BTs more than half (55–67%) of the features detected in the effluent were not found in the influent. A comparable proportion of TPs was also detected after GAC and sand filtration due to their microbial activities.
  •  
6.
  • Pistocchi, Alberto, et al. (författare)
  • European scale assessment of the potential of ozonation and activated carbon treatment to reduce micropollutant emissions with wastewater
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 848
  • Tidskriftsartikel (refereegranskat)abstract
    • Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of “total pollution proxy substances” (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the “chemical universe” impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models.We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks.Our analysis provides background for a cost-effectiveness appraisal of advanced treatment “at the end of the pipe”, which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy