SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Terwilliger Thomas C.) "

Sökning: WFRF:(Terwilliger Thomas C.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Imanishi, T., et al. (författare)
  • Integrative annotation of 21,037 human genes validated by full-length cDNA clones
  • 2004
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 2:6, s. 856-875
  • Tidskriftsartikel (refereegranskat)abstract
    • The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology.
  •  
2.
  • Krajewski, Wojciech W., 1977- (författare)
  • Structural Studies of Glutamine Synthetases – Towards the Development of Novel Antitubercular Agents
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Glutamine synthetase (GS) plays an important role in nitrogen metabolism, where it catalyzes the ATP-dependent condensation of glutamate and ammonia to yield glutamine. Recent studies showed the importance of M. tuberculosis GS (MtGS) for growth and survival of the bacterium, and demonstrated its potential as a drug target. This thesis presents structural studies of MtGS and mammalian GSs, which are aimed at identifying and developing novel inhibitors against the mycobacterial target. The structure of MtGS was solved in complex with a phosphorylated form of the inhibitor methionine sulfoximine, magnesium and ADP. The complex structure provides a detailed picture of the active site, offering several insights into catalysis and inhibition, as well as forming a solid basis for structure-based drug design. The apo canine GS and liganded human GS structures described in this thesis represent the first structures of the mammalian enzymes. Comparison of the structures revealed substrate-induced conformational changes. Inspection of the nucleotide-binding site showed that it differs from that of MtGS, thus offering good opportunities to design specific and selective inhibitors of the mycobacterial enzyme. The amino acid-binding site of MtGS was evaluated as a target for inhibition, using a combination of a literature survey, structure-based virtual screening and the synthesis of a small library of compounds. As a result, several new inhibitors of MtGS could be identified. Finally, the structural basis for inhibition of MtGS by a purine analogue (PA) is provided. PA, an analogue of a class of compounds found to inhibit MtGS in a high-throughput screening assay, targets the nucleotide-binding site. The architecture of the HsGS nucleotide-binding site indicates that PA would not be able to bind to the human enzyme, offering good prospects for selective inhibition of MtGS.
  •  
3.
  • Su, Xiao-Dong, et al. (författare)
  • Protein crystallography from the perspective of technology developments
  • 2015
  • Ingår i: Crystallography Reviews. - 0889-311X. ; 21:1-2, s. 122-153
  • Forskningsöversikt (refereegranskat)abstract
    • Early on, crystallography was a domain of mineralogy and mathematics and dealt mostly with symmetry properties and imaginary crystal lattices. This changed when Wilhelm Conrad Rontgen discovered X-rays in 1895, and in 1912, Max von Laue and his associates discovered that X-ray irradiated salt crystals would produce diffraction patterns that could reveal the internal atomic periodicity of the crystals. In the same year, the father-and-son team, Henry and Lawrence Bragg successfully solved the first crystal structure of sodium chloride and the era of modern crystallography began. Protein crystallography (PX) started some 20 years later with the pioneering work of British crystallographers. In the past 50-60 years, the achievements of modern crystallography and particularly those in PX have been due to breakthroughs in theoretical and technical advancements such as phasing and direct methods; to more powerful X-ray sources such as synchrotron radiation; to more sensitive and efficient X-ray detectors; to ever faster computers and to improvements in software. The exponential development of PX has been accelerated by the invention and applications of recombinant DNA technology that can yield nearly any protein of interest in large amounts and with relative ease. Novel methods, informatics platforms and technologies for automation and high-throughput have allowed the development of large-scale, high-efficiency macromolecular crystallography efforts in the field of structural genomics. Very recently, the X-ray free-electron laser sources and its applications in PX have shown great potential for revolutionizing the whole field again in the near future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy