SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Teschendorff Andrew E.) "

Sökning: WFRF:(Teschendorff Andrew E.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Battram, Thomas, et al. (författare)
  • Appraising the causal relevance of DNA methylation for risk of lung cancer
  • 2019
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press. - 0300-5771 .- 1464-3685. ; 48:5, s. 1493-1504
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: DNA methylation changes in peripheral blood have recently been identified in relation to lung cancer risk. Some of these changes have been suggested to mediate part of the effect of smoking on lung cancer. However, limitations with conventional mediation analyses mean that the causal nature of these methylation changes has yet to be fully elucidated.Methods: We first performed a meta-analysis of four epigenome-wide association studies (EWAS) of lung cancer (918 cases, 918 controls). Next, we conducted a two-sample Mendelian randomization analysis, using genetic instruments for methylation at CpG sites identified in the EWAS meta-analysis, and 29 863 cases and 55 586 controls from the TRICL-ILCCO lung cancer consortium, to appraise the possible causal role of methylation at these sites on lung cancer.Results: Sixteen CpG sites were identified from the EWAS meta-analysis [false discovery rate (FDR) < 0.05], for 14 of which we could identify genetic instruments. Mendelian randomization provided little evidence that DNA methylation in peripheral blood at the 14 CpG sites plays a causal role in lung cancer development (FDR > 0.05), including for cg05575921-AHRR where methylation is strongly associated with both smoke exposure and lung cancer risk.Conclusions: The results contrast with previous observational and mediation analysis, which have made strong claims regarding the causal role of DNA methylation. Thus, previous suggestions of a mediating role of methylation at sites identified in peripheral blood, such as cg05575921-AHRR, could be unfounded. However, this study does not preclude the possibility that differential DNA methylation at other sites is causally involved in lung cancer development, especially within lung tissue.
  •  
2.
  • Paul, Dirk S., et al. (författare)
  • Increased DNA methylation variability in type 1 diabetes across three immune effector cell types
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.
  •  
3.
  • Ma, Zhanyu, 1982-, et al. (författare)
  • A variational bayes beta mixture model for feature selection in DNA methylation studies
  • 2013
  • Ingår i: Journal of Bioinformatics and Computational Biology. - 0219-7200 .- 1757-6334. ; 11:4, s. 1350005-
  • Tidskriftsartikel (refereegranskat)abstract
    • An increasing number of studies are using beadarrays to measure DNA methylation on a genome-wide basis. The purpose is to identify novel biomarkers in a wide range of complex genetic diseases including cancer. A common difficulty encountered in these studies is distinguishing true biomarkers from false positives. While statistical methods aimed at improving the feature selection step have been developed for gene expression, relatively few methods have been adapted to DNA methylation data, which is naturally beta-distributed. Here we explore and propose an innovative application of a recently developed variational Bayesian beta-mixture model (VBBMM) to the feature selection problem in the context of DNA methylation data generated from a highly popular beadarray technology. We demonstrate that VBBMM offers significant improvements in inference and feature selection in this type of data compared to an Expectation-Maximization (EM) algorithm, at a significantly reduced computational cost. We further demonstrate the added value of VBBMM as a feature selection and prioritization step in the context of identifying prognostic markers in breast cancer. A variational Bayesian approach to feature selection of DNA methylation profiles should thus be of value to any study undergoing large-scale DNA methylation profiling in search of novel biomarkers.
  •  
4.
  • Ma, Zhanyu, et al. (författare)
  • Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis
  • 2014
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 15:6, s. 10835-10854
  • Tidskriftsartikel (refereegranskat)abstract
    • As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.
  •  
5.
  • Ma, Zhanyu, et al. (författare)
  • Variational Bayesian Matrix Factorization for Bounded Support Data
  • 2015
  • Ingår i: IEEE Transactions on Pattern Analysis and Machine Intelligence. - 0162-8828 .- 1939-3539. ; 37:4, s. 876-889
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel Bayesian matrix factorization method for bounded support data is presented. Each entry in the observation matrix is assumed to be beta distributed. As the beta distribution has two parameters, two parameter matrices can be obtained, which matrices contain only nonnegative values. In order to provide low-rank matrix factorization, the nonnegative matrix factorization (NMF) technique is applied. Furthermore, each entry in the factorized matrices, i.e., the basis and excitation matrices, is assigned with gamma prior. Therefore, we name this method as beta-gamma NMF (BG-NMF). Due to the integral expression of the gamma function, estimation of the posterior distribution in the BG-NMF model can not be presented by an analytically tractable solution. With the variational inference framework and the relative convexity property of the log-inverse-beta function, we propose a new lower-bound to approximate the objective function. With this new lower-bound, we derive an analytically tractable solution to approximately calculate the posterior distributions. Each of the approximated posterior distributions is also gamma distributed, which retains the conjugacy of the Bayesian estimation. In addition, a sparse BG-NMF can be obtained by including a sparseness constraint to the gamma prior. Evaluations with synthetic data and real life data demonstrate the good performance of the proposed method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy