SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Teuling Adriaan) "

Sökning: WFRF:(Teuling Adriaan)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arheimer, Berit, et al. (författare)
  • The IAHS Science for Solutions decade, with Hydrology Engaging Local People IN a Global world (HELPING)
  • 2024
  • Ingår i: Hydrological Sciences Journal. - 0262-6667 .- 2150-3435.
  • Tidskriftsartikel (refereegranskat)abstract
    • The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions - may it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes.
  •  
2.
  • Ellison, David, et al. (författare)
  • Trees, forests and water : Cool insights for a hot world
  • 2017
  • Ingår i: Global Environmental Change. - : Elsevier BV. - 0959-3780 .- 1872-9495. ; 43, s. 51-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Forest-driven water and energy cycles are poorly integrated into regional, national, continental and global decision-making on climate change adaptation, mitigation, land use and water management. This constrains humanity's ability to protect our planet's climate and life-sustaining functions. The substantial body of research we review reveals that forest, water and energy interactions provide the foundations for carbon storage, for cooling terrestrial surfaces and for distributing water resources. Forests and trees must be recognized as prime regulators within the water, energy and carbon cycles. If these functions are ignored, planners will be unable to assess, adapt to or mitigate the impacts of changing land cover and climate. Our call to action targets a reversal of paradigms, from a carbon-centric model to one that treats the hydrologic and climate-cooling effects of trees and forests as the first order of priority. For reasons of sustainability, carbon storage must remain a secondary, though valuable, by-product. The effects of tree cover on climate at local, regional and continental scales offer benefits that demand wider recognition. The forest- and tree-centered research insights we review and analyze provide a knowledge-base for improving plans, policies and actions. Our understanding of how trees and forests influence water, energy and carbon cycles has important implications, both for the structure of planning, management and governance institutions, as well as for how trees and forests might be used to improve sustainability, adaptation and mitigation efforts.
  •  
3.
  • Kumar, Rohini, et al. (författare)
  • Multiscale evaluation of the Standardized Precipitation Index as a groundwater drought indicator
  • 2016
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 20, s. 1117-1131
  • Tidskriftsartikel (refereegranskat)abstract
    • The lack of comprehensive groundwater observations at regional and global scales has promoted the use of alternative proxies and indices to quantify and predict groundwater droughts. Among them, the Standardized Precipitation Index (SPI) is commonly used to characterize droughts in different compartments of the hydro-meteorological system. In this study, we explore the suitability of the SPI to characterize local- and regional-scale groundwater droughts using observations at more than 2000 groundwater wells in geologically different areas in Germany and the Netherlands. A multiscale evaluation of the SPI is performed using the station data and their corresponding 0.5° gridded estimates to analyze the local and regional behavior of groundwater droughts, respectively. The standardized anomalies in the groundwater heads (SGI) were correlated against SPIs obtained using different accumulation periods. The accumulation periods to achieve maximum correlation exhibited high spatial variability (ranges 3–36 months) at both scales, leading to the conclusion that an a priori selection of the accumulation period (for computing the SPI) would result in inadequate characterization of groundwater droughts. The application of the uniform accumulation periods over the entire domain significantly reduced the correlation between the SPI and SGI (≈21–66%), indicating the limited applicability of the SPI as a proxy for groundwater droughts even at long accumulation times. Furthermore, the low scores of the hit rate (0.3–0.6) and a high false alarm ratio (0.4–0.7) at the majority of the wells and grid cells demonstrated the low reliability of groundwater drought predictions using the SPI. The findings of this study highlight the pitfalls of using the SPI as a groundwater drought indicator at both local and regional scales, and stress the need for more groundwater observations and accounting for regional hydrogeological characteristics in groundwater drought monitoring.
  •  
4.
  • Ploum, Stefan W., et al. (författare)
  • Soil frost effects on streamflow recessions in a subarctic catchment
  • 2019
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 33:9, s. 1304-1316
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is warming rapidly. Changing seasonal freezing and thawing cycles of the soil are expected to affect river run-off substantially, but how soil frost influences river run-off at catchment scales is still largely unknown. We hypothesize that soil frost alters flow paths and therefore affects storage-discharge relations in subarctic catchments. To test this hypothesis, we used an approach that combines meteorological records and recession analysis. We studied streamflow data (1986-2015) of Abiskojokka, a river that drains a mountainous catchment (560 km(2)) in the north of Sweden (68 degrees latitude). Recessions were separated into frost periods (spring) and nofrost periods (summer) and then compared. We observed a significant difference between recessions of the two periods: During spring, discharge was linearly related to storage, whereas storage-discharge relationships in summer were less linear. An analysis of explanatory factors showed that after winters with cold soil temperatures and low snowpack, storage-discharge relations approached linearity. On the other hand, relatively warm winter soil conditions resulted in storage-discharge relationships that were less linear. Even in summer, relatively cold antecedent winter soils and low snowpack levels had a propagating effect on streamflow. This could be an indication that soil frost controls recharge of deep groundwater flow paths, which affects storage-discharge relationships in summer. We interpret these findings as evidence for soil frost to have an important control over river run-off dynamics. To our knowledge, this is the first study showing significant catchment-integrated effects of soil frost on this spatiotemporal scale.
  •  
5.
  • Pranindita, Agnes, et al. (författare)
  • Moisture recycling and the potential role of forests as moisture source during European heatwaves
  • 2021
  • Ingår i: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 58:1-2, s. 609-624
  • Tidskriftsartikel (refereegranskat)abstract
    • Heatwaves are extreme weather events that have become more frequent and intense in Europe over the past decades. Heatwaves are often coupled to droughts. The combination of them lead to severe ecological and socio-economic impacts. Heatwaves can self-amplify through internal climatic feedback that reduces local precipitation. Understanding the terrestrial sources of local precipitation during heatwaves might help identify mitigation strategies on land management and change that alleviate impacts. Moisture recycling of local water sources through evaporation allows a region to maintain precipitation in the same region or, by being transported by winds, in adjacent regions. To understand the role of terrestrial moisture sources for sustaining precipitation during heatwaves, we backtrack and analyse the precipitation sources of Northern, Western, and Southern sub-regions across Europe during 20 heatwave periods between 1979 and 2018 using the moisture tracking model Water Accounting Model-2layers (WAM-2layers). In Northern and Western Europe, we find that stabilizing anticyclonic patterns reduce the climatological westerly supply of moisture, mainly from the North Atlantic Ocean, and enhances the moisture flow from the eastern Euro-Asian continent and from within their own regions-suggesting over 10% shift of moisture supply from oceanic to terrestrial sources. In Southern Europe, limited local moisture sources result in a dramatic decrease in the local moisture recycling rate. Forests uniformly supply additional moisture to all regions during heatwaves and thus contribute to buffer local impacts. This study suggests that terrestrial moisture sources, especially forests, may potentially be important to mitigate moisture scarcity during heatwaves in Europe.
  •  
6.
  • Troch, Peter A., et al. (författare)
  • The importance of hydraulic groundwater theory in catchment hydrology : The legacy of Wilfried Brutsaert and Jean-Yves Parlange
  • 2013
  • Ingår i: Water resources research. - : American Geophysical Union (AGU). - 0043-1397 .- 1944-7973. ; 49:9, s. 5099-5116
  • Forskningsöversikt (refereegranskat)abstract
    • Based on a literature overview, this paper summarizes the impact and legacy of the contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with respect to the current state-of-the-art understanding in hydraulic groundwater theory. Forming the basis of many applications in catchment hydrology, ranging from drought flow analysis to surface water-groundwater interactions, hydraulic groundwater theory simplifies the description of water flow in unconfined riparian and perched aquifers through assumptions attributed to Dupuit and Forchheimer. Boussinesq (1877) derived a general equation to study flow dynamics of unconfined aquifers in uniformly sloping hillslopes, resulting in a remarkably accurate and applicable family of results, though often challenging to solve due to its nonlinear form. Under certain conditions, the Boussinesq equation can be solved analytically allowing compact representation of soil and geomorphological controls on unconfined aquifer storage and release dynamics. The Boussinesq equation has been extended to account for flow divergence/convergence as well as for nonuniform bedrock slope (concave/convex). The extended Boussinesq equation has been favorably compared to numerical solutions of the three-dimensional Richards equation, confirming its validity under certain geometric conditions. Analytical solutions of the linearized original and extended Boussinesq equations led to the formulation of similarity indices for baseflow recession analysis, including scaling rules, to predict the moments of baseflow response. Validation of theoretical recession parameters on real-world streamflow data is complicated due to limited measurement accuracy, changing boundary conditions, and the strong coupling between the saturated aquifer with the overlying unsaturated zone. However, recent advances are shown to have mitigated several of these issues. The extended Boussinesq equation has been successfully applied to represent baseflow dynamics in catchment-scale hydrological models, and it is currently considered to represent lateral redistribution of groundwater in land surface schemes applied in global circulation models. From the review, it is clear that Wilfried Brutsaert and Jean-Yves Parlange stimulated a body of research that has led to several fundamental discoveries and practical applications with important contributions in hydrological modeling.
  •  
7.
  • van Dijke, Anne J. Hoek, et al. (författare)
  • Shifts in regional water availability due to global tree restoration
  • 2022
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15:5, s. 363-368
  • Tidskriftsartikel (refereegranskat)abstract
    • Tree restoration is an effective way to store atmospheric carbon and mitigate climate change. However, large-scale tree-cover expansion has long been known to increase evaporation, leading to reduced local water availability and streamflow. More recent studies suggest that increased precipitation, through enhanced atmospheric moisture recycling, can offset this effect. Here we calculate how 900 million hectares of global tree restoration would impact evaporation and precipitation using an ensemble of data-driven Budyko models and the UTrack moisture recycling dataset. We show that the combined effects of directly enhanced evaporation and indirectly enhanced precipitation create complex patterns of shifting water availability. Large-scale tree-cover expansion can increase water availability by up to 6% in some regions, while decreasing it by up to 38% in others. There is a divergent impact on large river basins: some rivers could lose 6% of their streamflow due to enhanced evaporation, while for other rivers, the greater evaporation is counterbalanced by more moisture recycling. Several so-called hot spots for forest restoration could lose water, including regions that are already facing water scarcity today. Tree restoration significantly shifts terrestrial water fluxes, and we emphasize that future tree-restoration strategies should consider these hydrological effects.
  •  
8.
  • Van Loon, Anne, et al. (författare)
  • Drought in the Anthropocene
  • 2016
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 9:2, s. 89-91
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Drought management is inefficient because feedbacks between drought and people are not fully understood. In this human-influenced era, we need to rethink the concept of drought to include the human role in mitigating and enhancing drought.
  •  
9.
  • Van Loon, Anne F., et al. (författare)
  • Drought in a human-modified world : reframing drought definitions, understanding, and analysis approaches
  • 2016
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 20:9, s. 3631-3650
  • Tidskriftsartikel (refereegranskat)abstract
    • In the current human-modified world, or Anthropocene, the state of water stores and fluxes has become dependent on human as well as natural processes. Water deficits (or droughts) are the result of a complex interaction between meteorological anomalies, land surface processes, and human inflows, outflows, and storage changes. Our current inability to adequately analyse and manage drought in many places points to gaps in our understanding and to inadequate data and tools. The Anthropocene requires a new framework for drought definitions and research. Drought definitions need to be revisited to explicitly include human processes driving and modifying soil moisture drought and hydrological drought development. We give recommendations for robust drought definitions to clarify timescales of drought and prevent confusion with related terms such as water scarcity and overexploitation. Additionally, our understanding and analysis of drought need to move from single driver to multiple drivers and from uni-directional to multi-directional. We identify research gaps and propose analysis approaches on (1) drivers, (2) modifiers, (3) impacts, (4) feedbacks, and (5) changing the baseline of drought in the Anthropocene. The most pressing research questions are related to the attribution of drought to its causes, to linking drought impacts to drought characteristics, and to societal adaptation and responses to drought. Example questions include (i) What are the dominant drivers of drought in different parts of the world? (ii) How do human modifications of drought enhance or alleviate drought severity? (iii) How do impacts of drought depend on the physical characteristics of drought vs. the vulnerability of people or the environment? (iv) To what extent are physical and human drought processes coupled, and can feedback loops be identified and altered to lessen or mitigate drought? (v) How should we adapt our drought analysis to accommodate changes in the normal situation (i.e. what are considered normal or reference conditions) over time? Answering these questions requires exploration of qualitative and quantitative data as well as mixed modelling approaches. The challenges related to drought research and management in the Anthropocene are not unique to drought, but do require urgent attention. We give recommendations drawn from the fields of flood research, ecology, water management, and water resources studies. The framework presented here provides a holistic view on drought in the Anthropocene, which will help improve management strategies for mitigating the severity and reducing the impacts of droughts in future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy