SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Theotokatos Gerasimos) "

Sökning: WFRF:(Theotokatos Gerasimos)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baldi, Francesco, 1986, et al. (författare)
  • Development of a combined mean value-zero dimensional model and application for a large marine four-stroke Diesel engine simulation
  • 2015
  • Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 154, s. 402-415
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, a combined mean value–zero dimensional model is developed using a modular approach in the computational environment of Matlab/Simulink. According to that, only the closed cycle of one engine cylinder is modelled by following the zero-dimensional approach, whereas the cylinder open cycle as well as the other engine components are modelled according to the mean value concept. The proposed model combines the advantages of the mean value and zero-dimensional models allowing for the calculation of engine performance parameters including the in-cylinder ones in relatively short execution time and therefore, it can be used in cases where the mean value model exceeds its limitations. A large marine four-stroke Diesel engine steady state operation at constant speed was simulated and the results were validated against the engine shop trials data. The model provided results comparable to the respective ones obtained by using a mean value model. Then, a number of simulation runs were performed, so that the mapping of the brake specific fuel consumption for the whole operating envelope was derived. In addition, runs with varying turbocharger turbine geometric area were carried out and the influence of variable turbine geometry on the engine performance was evaluated. Finally, the developed model was used to investigated the propulsion system behaviour of a handymax size product carrier for constant and variable engine speed operation. The results are presented and discussed enlightening the most efficient strategies for the ship operation and quantifying the expected fuel savings.
  •  
2.
  • Llamas, Xavier, 1989- (författare)
  • Modeling and Control of EGR on Marine Two-Stroke Diesel Engines
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The international marine shipping industry is responsible for the transport of around 90% of the total world trade. Low-speed two-stroke diesel engines usually propel the largest trading ships. This engine type choice is mainly motivated by its high fuel efficiency and the capacity to burn cheap low-quality fuels. To reduce the marine freight impact on the environment, the International Maritime Organization (IMO) has introduced stricter limits on the engine pollutant emissions. One of these new restrictions, named Tier III, sets the maximum NOx emissions permitted. New emission reduction technologies have to be developed to fulfill the Tier III limits on two-stroke engines since adjusting the engine combustion alone is not sufficient. There are several promising technologies to achieve the required NOx reductions, Exhaust Gas Recirculation (EGR) is one of them.  For automotive applications, EGR is a mature technology, and many of the research findings can be used directly in marine applications. However, there are some differences in marine two-stroke engines, which require further development to apply and control EGR.The number of available engines for testing EGR controllers on ships and test beds is low due to the recent introduction of EGR. Hence, engine simulation models are a good alternative for developing controllers, and many different engine loading scenarios can be simulated without the high costs of running real engine tests. The primary focus of this thesis is the development and validation of models for two-stroke marine engines with EGR. The modeling follows a Mean Value Engine Model (MVEM) approach, which has a low computational complexity and permits faster than real-time simulations suitable for controller testing. A parameterization process that deals with the low measurement data availability, compared to the available data on automotive engines, is also investigated and described. As a result, the proposed model is parameterized to two different two-stroke engines showing a good agreement with the measurements in both stationary and dynamic conditions.Several engine components have been developed. One of these is a new analytic in-cylinder pressure model that captures the influence of the injection and exhaust valve timings without increasing the simulation time. A new compressor model that can extrapolate to low speeds and pressure ratios in a physically sound way is also described. This compressor model is a requirement to be able to simulate low engine loads. Moreover, a novel parameterization algorithm is shown to handle well the model nonlinearities and to obtain a good model agreement with a large number of tested compressor maps. Furthermore, the engine model is complemented with dynamic models for ship and propeller to be able to simulate transient sailing scenarios, where good EGR controller performance is crucial. The model is used to identify the low load area as the most challenging for the controller performance, due to the slower engine air path dynamics. Further low load simulations indicate that sensor bias can be problematic and lead to an undesired black smoke formation, while errors in the parameters of the controller flow estimators are not as critical. This result is valuable because for a newly built engine a proper sensor setup is more straightforward to verify than to get the right parameters for the flow estimators.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy