SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Theuretzbacher Ursula) "

Sökning: WFRF:(Theuretzbacher Ursula)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bulman, Zackery P., et al. (författare)
  • Research priorities towards precision antibiotic therapy to improve patient care
  • 2022
  • Ingår i: LANCET MICROBE. - : Elsevier. - 2666-5247. ; 3:10, s. e795-e802
  • Tidskriftsartikel (refereegranskat)abstract
    • Antibiotic resistance presents an incessant threat to our drug armamentarium that necessitates novel approaches to therapy. Over the past several decades, investigation of pharmacokinetic and pharmacodynamic (PKPD) principles has substantially improved our understanding of the relationships between the antibiotic, pathogen, and infected patient. However, crucial gaps in our understanding of the pharmacology of antibacterials and their optimal use in the care of patients continue to exist; simply attaining antibiotic exposures that are considered adequate based on traditional targets can still result in treatment being unsuccessful and resistance proliferation for some infections. It is this salient paradox that points to key future directions for research in antibiotic therapeutics. This Personal View discusses six priority areas for antibiotic pharmacology research: (1) antibiotic-pathogen interactions, (2) antibiotic targets for combination therapy, (3) mechanistic models that describe the time-course of treatment response, (4) understanding and modelling of host response to infection, (5) personalised medicine through therapeutic drug management, and (6) application of these principles to support development of novel therapies. Innovative approaches that enhance our understanding of antibiotic pharmacology and facilitate more accurate predictions of treatment success, coupled with traditional pharmacology research, can be applied at the population level and to individual patients to improve outcomes.
  •  
2.
  • Daitch, Vered, et al. (författare)
  • Excluded versus included patients in a randomized controlled trial of infections caused by carbapenem-resistant Gram-negative bacteria : relevance to external validity
  • 2021
  • Ingår i: BMC Infectious Diseases. - : BioMed Central (BMC). - 1471-2334. ; 21
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population external validity is the extent to which an experimental study results can be generalized from a specific sample to a defined population. In order to apply the results of a study, we should be able to assess its population external validity. We performed an investigator-initiated randomized controlled trial (RCT) (AIDA study), which compared colistin-meropenem combination therapy to colistin monotherapy in the treatment of patients infected with carbapenem-resistant Gram-negative bacteria. In order to examine the study's population external validity and to substantiate the use of AIDA study results in clinical practice, we performed a concomitant observational trial.Methods: The study was conducted between October 1st, 2013 and January 31st, 2017 (during the RCTs recruitment period) in Greece, Israel and Italy. Patients included in the observational arm of the study have fulfilled clinical and microbiological inclusion criteria but were excluded from the RCT due to receipt of colistin for > 96 h, refusal to participate, or prior inclusion in the RCT. Non-randomized cases were compared to randomized patients. The primary outcome was clinical failure at 14 days of infection onset.Results: Analysis included 701 patients. Patients were infected mainly with Acinetobacter baumannii [78.2% (548/701)]. The most common reason for exclusion was refusal to participate [62% (183/295)]. Non-randomized and randomized patients were similar in most of the demographic and background parameters, though randomized patients showed minor differences towards a more severe infection. Combination therapy was less common in non-randomized patients [31.9% (53/166) vs. 51.2% (208/406), p = 0.000]. Randomized patients received longer treatment of colistin [13 days (IQR 10-16) vs. 8.5 days (IQR 0-15), p = 0.000]. Univariate analysis showed that non-randomized patients were more inclined to clinical failure on day 14 from infection onset [82% (242/295) vs. 75.5% (307/406), p = 0.042]. After adjusting for other variables, non-inclusion was not an independent risk factor for clinical failure at day 14.Conclusion: The similarity between the observational arm and RCT patients has strengthened our confidence in the population external validity of the AIDA trial. Adding an observational arm to intervention studies can help increase the population external validity and improve implementation of study results in clinical practice.
  •  
3.
  • Dickstein, Yaakov, et al. (författare)
  • Multicentre open-label randomised controlled trial to compare colistin alone with colistin plus meropenem for the treatment of severe infections caused by carbapenem-resistant Gram-negative infections (AIDA) : a study protocol
  • 2016
  • Ingår i: BMJ Open. - : BMJ. - 2044-6055. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The emergence of antibiotic-resistant bacteria has driven renewed interest in older antibacterials, including colistin. Previous studies have shown that colistin is less effective and more toxic than modern antibiotics. In vitro synergy studies and clinical observational studies suggest a benefit of combining colistin with a carbapenem. A randomised controlled study is necessary for clarification. Methods and analysis: This is a multicentre, investigator-initiated, open-label, randomised controlled superiority 1:1 study comparing colistin monotherapy with colistin-meropenem combination therapy for infections caused by carbapenem-resistant Gram-negative bacteria. The study is being conducted in 6 centres in 3 countries (Italy, Greece and Israel). We include patients with hospital-associated and ventilator-associated pneumonia, bloodstream infections and urosepsis. The primary outcome is treatment success at day 14, defined as survival, haemodynamic stability, stable or improved respiratory status for patients with pneumonia, microbiological cure for patients with bacteraemia and stability or improvement of the Sequential Organ Failure Assessment (SOFA) score. Secondary outcomes include 14-day and 28-day mortality as well as other clinical end points and safety outcomes. A sample size of 360 patients was calculated on the basis of an absolute improvement in clinical success of 15% with combination therapy. Outcomes will be assessed by intention to treat. Serum colistin samples are obtained from all patients to obtain population pharmacokinetic models. Microbiological sampling includes weekly surveillance samples with analysis of resistance mechanisms and synergy. An observational trial is evaluating patients who met eligibility requirements but were not randomised in order to assess generalisability of findings. Ethics and dissemination: The study was approved by ethics committees at each centre and informed consent will be obtained for all patients. The trial is being performed under the auspices of an independent data and safety monitoring committee and is included in a broad dissemination strategy regarding revival of old antibiotics.
  •  
4.
  • Dickstein, Yaakov, et al. (författare)
  • Treatment Outcomes of Colistin- and Carbapenem-resistant Acinetobacter baumannii Infections : An Exploratory Subgroup Analysis of a Randomized Clinical Trial
  • 2019
  • Ingår i: Clinical Infectious Diseases. - : OXFORD UNIV PRESS INC. - 1058-4838 .- 1537-6591. ; 69:5, s. 769-776
  • Tidskriftsartikel (refereegranskat)abstract
    • Background We evaluated the association between mortality and colistin resistance in Acinetobacter baumannii infections and the interaction with antibiotic therapy. Methods This is a secondary analysis of a randomized controlled trial of patients with carbapenem-resistant gram-negative bacterial infections treated with colistin or colistin-meropenem combination. We evaluated patients with infection caused by carbapenem-resistant A. baumannii (CRAB) identified as colistin susceptible (CoS) at the time of treatment and compared patients in which the isolate was confirmed as CoS with those whose isolates were retrospectively identified as colistin resistant (CoR) when tested by broth microdilution (BMD). The primary outcome was 28-day mortality. Results Data were available for 266 patients (214 CoS and 52 CoR isolates). Patients with CoR isolates had higher baseline functional capacity and lower rates of mechanical ventilation than patients with CoS isolates. All-cause 28-day mortality was 42.3% (22/52) among patients with CoR strains and 52.8% (113/214) among patients with CoS isolates (P = .174). After adjusting for variables associated with mortality, the mortality rate was lower among patients with CoR isolates (odds ratio [OR], 0.285 [95% confidence interval {CI}, .118-.686]). This difference was associated with treatment arm: Mortality rates among patients with CoR isolates were higher in those randomized to colistin-meropenem combination therapy compared to colistin monotherapy (OR, 3.065 [95% CI, 1.021-9.202]). Conclusions Colistin resistance determined by BMD was associated with lower mortality among patients with severe CRAB infections. Among patients with CoR isolates, colistin monotherapy was associated with a better outcome compared to colistin-meropenem combination therapy.
  •  
5.
  • Frenk, Sammy, et al. (författare)
  • Large-scale WGS of carbapenem-resistant Acinetobacter baumannii isolates reveals patterns of dissemination of ST clades associated with antibiotic resistance
  • 2022
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 77:4, s. 934-943
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To describe the population genetics and antibiotic resistance gene distribution of carbapenem-resistant Acinetobacter baumannii (CRAB) isolates causing infections in three Mediterranean countries.Methods: Isolates were collected during the 2013-17 AIDA clinical trial in six hospitals in Israel, Greece and Italy. WGS, bioinformatic characterization and antibiotic resistance profiling were performed.Results In the 247 CRAB isolates characterized in this study, ST distribution varied by country: 29/31 (93.5%) Greek isolates, 34/41 (82.9%) Italian isolates and 70/175 (40.0%) Israeli isolates belonged to ST2. The identified ST2 isolates included eight distinct clades: 2C, 2D and 2H were significantly more common in Italy, while 2F was unique to Greece. The uncommon ST3 was not present among Greek isolates and constituted only 5/41 (12%) Italian isolates. On the other hand, it was much more common among Israeli isolates: 78/175 (44.6%) belonged to ST3. The vast majority of isolates, 240/247 (97.2%), were found to harbour acquired carbapenemases, primarily bla(OXA-23.) The chromosomal oxaAb (bla(OXA-51-like)) and ampC genes characteristic of this organism were also ubiquitous. Most (96.4%) ST3 isolates carried a broad-host-range plasmid IncP1 alpha.Conclusions The geographical differences in CRAB populations support the theory that clonal spread of CRAB leads to endemicity in hospitals and regions. The close association between antibiotic resistance genes and clades, and between plasmids and STs, suggest that de novo creation of MDR A. baumannii is rare. The clustering of antibiotic resistance genes and plasmids that is unique to each clade/ST, and nearly uniform within clades/STs, suggests that horizontal transmission is rare but crucial to the clade's/ST's success.
  •  
6.
  • Kon, Hadas, et al. (författare)
  • Prevalence and Clinical Consequences of Colistin Heteroresistance and Evolution into Full Resistance in Carbapenem-Resistant Acinetobacter baumannii
  • 2023
  • Ingår i: Microbiology Spectrum. - : American Society for Microbiology. - 2165-0497. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Colistin heteroresistance (HR) refers to a bacterial population comprised of several subpopulations with different levels of resistance to colistin. In this study, we discuss the classic form of HR, in which a resistant subpopulation exists within a predominantly susceptible population. We investigated the prevalence of colistin HR and its evolution into full resistance among 173 clinical carbapenem-resistant Acinetobacter baumannii isolates and examined the effect of HR on clinical outcomes. To determine HR, we performed population analysis profiling. Our results showed a high prevalence of HR (67.1%). To examine evolution of HR strains into full resistance, the HR strains were grown in colistin-containing broth, transferred onto colistin-containing plates, and colonies on these plates were transferred into colistin-free broth. Many of the HR strains (80.2%) evolved into full resistance, 17.2% reverted to HR, and 2.6% were borderline. We used logistic regression to compare 14-day clinical failure and 14-day mortality between patients infected by HR versus susceptible non-HR carbapenem-resistant A. baumannii. In the subgroup of patients with bacteremia, HR was significantly associated with 14-day mortality.IMPORTANCE To our knowledge, this is the first large-scale study to report on HR in Gram-negative bacteria. We described the prevalence of colistin HR in a large sample of carbapenem-resistant A. baumannii isolates, the evolution of many colistin HR isolates to a resistant phenotype following colistin exposure and withdrawal, and the clinical consequences of colistin HR. We found a high prevalence of HR among clinical carbapenem-resistant A. baumannii isolates; most evolved into a resistant phenotype following colistin exposure and withdrawal. In patients treated with colistin, evolution of HR A. baumannii into full resistance could lead to higher rates of treatment failure and contribute to the reservoir of colistin-resistant pathogens in health care settings. To our knowledge, this is the first large-scale study to report on HR in Gram-negative bacteria. We described the prevalence of colistin HR in a large sample of carbapenem-resistant A. baumannii isolates, the evolution of many colistin HR isolates to a resistant phenotype following colistin exposure and withdrawal, and the clinical consequences of colistin HR.
  •  
7.
  • Mouton, Johan W., et al. (författare)
  • Tissue concentrations : do we ever learn?
  • 2008
  • Ingår i: Journal of Antimicrobial Chemotherapy. - : Oxford University Press (OUP). - 0305-7453 .- 1460-2091. ; 61:2, s. 235-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last decades, numerous papers have appeared--and still are appearing--that describe concentrations in tissues in an effort to predict the efficacy of an antimicrobial agent based on these concentrations and MICs for microorganisms. A common method is to use measurements of concentrations in tissue homogenates, comparing these with values derived from the corresponding blood samples and on that basis draw conclusions with respect to the potential clinical use of the drug. This approach is not justifiable for a number of reasons that includes both pharmacokinetic as well as pharmacodynamic causes. This way of presenting data with the derived conclusions is often misleading and may ultimately be harmful in patient care.
  •  
8.
  •  
9.
  • Nation, Roger L, et al. (författare)
  • Framework for optimisation of the clinical use of colistin and polymyxin B : the Prato polymyxin consensus
  • 2015
  • Ingår i: The Lancet - Infectious diseases. - 1473-3099 .- 1474-4457. ; 15:2, s. 225-234
  • Forskningsöversikt (refereegranskat)abstract
    • In the face of diminishing therapeutic options for the treatment of infections caused by multidrug-resistant, Gram-negative bacteria, clinicians are increasingly using colistin and polymyxin B. These antibiotics became available clinically in the 1950s, when understanding of antimicrobial pharmacology and regulatory requirements for approval of drugs was substantially less than today. At the 1st International Conference on Polymyxins in Prato, Italy, 2013, participants discussed a set of key objectives that were developed to explore the factors affecting the safe and effective use of polymyxins, identify the gaps in knowledge, and set priorities for future research. Participants identified several factors that affect the optimum use of polymyxins, including: confusion caused by several different conventions used to describe doses of colistin; an absence of appropriate pharmacopoeial standards for polymyxins; outdated and diverse product information; and uncertainties about susceptibility testing and breakpoints. High-priority areas for research included: better definition of the effectiveness of polymyxin-based combination therapy compared with monotherapy via well designed, randomised controlled trials; examination of the relative merits of colistin versus polymyxin B for various types of infection; investigation of pharmacokinetics in special patient populations; and definition of the role of nebulised polymyxins alone or in combination with intravenous polymyxins for the treatment of pneumonia. The key areas identified provide a roadmap for action regarding the continued use of polymyxins, and are intended to help with the effective and safe use of these important, last-line antibiotics.
  •  
10.
  • Nutman, Amir, et al. (författare)
  • Colistin plus meropenem for carbapenem-resistant Gram-negative infections : in vitro synergism is not associated with better clinical outcomes
  • 2020
  • Ingår i: Clinical Microbiology and Infection. - : Elsevier BV. - 1198-743X .- 1469-0691. ; 26:9, s. 1185-1191
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesIn vitro models showing synergism between polymyxins and carbapenems support combination treatment for carbapenem-resistant Gram-negative (CRGN) infections. We tested the association between the presence of in vitro synergism and clinical outcomes in patients treated with colistin plus meropenem.MethodsThis was a secondary analysis of AIDA, a randomized controlled trial comparing colistin with colistin–meropenem for severe CRGN infections. We tested in vitro synergism using a checkerboard assay. Based on the fractional inhibitory concentration (ΣFIC) index for each colistin–meropenem combination, we categorized results as synergistic, antagonistic or additive/indifferent. The primary outcome was clinical failure at 14 days. Secondary outcomes were 14- and 28-day mortality and microbiological failure.ResultsThe sample included 171 patients with infections caused by carbapenem-resistant Acinetobacter baumannii (n = 131), Enterobacteriaceae (n = 37) and Pseudomonas aeuruginosa (n = 3). In vitro testing showed synergism for 73 isolates, antagonism for 20 and additivism/indifference for 78. In patients who received any colistin plus meropenem, clinical failure at 14 days was 59/78 (75.6%) in the additivism/indifference group (reference category), 54/73 (74.0%) in the synergism group (adjusted odds ratio (aOR) 0.76, 95% CI 0.31–1.83), and 11/20 (55%) in the antagonism group (aOR 0.77, 95% CI 0.22–2.73). There was no significant difference between groups for any secondary outcome. Comparing the synergism group to patients treated with colistin monotherapy, synergism was not protective against 14-day clinical failure (aOR 0.52, 95% CI 0.26–1.04) or 14-day mortality (aOR1.09, 95% CI 0.60–1.96).DiscussionIn vitro synergism between colistin and meropenem via checkerboard method did not translate into clinical benefit.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy