SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thimonier A.) "

Sökning: WFRF:(Thimonier A.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Franz, D, et al. (författare)
  • Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe´s terrestrial ecosystems: a review
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32, s. 439-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
  •  
2.
  • Verstraeten, A., et al. (författare)
  • Effects of tree pollen on throughfall element fluxes in European forests
  • 2023
  • Ingår i: Biogeochemistry. - Göteborg : Springer. - 0168-2563 .- 1573-515X. ; 165:3, s. 311-325
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of tree pollen on precipitation chemistry are not fully understood and this can lead to misinterpretations of element deposition in European forests. We investigated the relationship between forest throughfall (TF) element fluxes and the Seasonal Pollen Integral (SPIn) using linear mixed-effects modelling (LME). TF was measured in 1990-2018 during the main pollen season (MPS, arbitrary two months) in 61 managed, mostly pure, even-aged Fagus, Quercus, Pinus, and Picea stands which are part of the ICP Forests Level II network. The SPIn for the dominant tree genus was observed at 56 aerobiological monitoring stations in nearby cities. The net contribution of pollen was estimated as the TF flux in the MPS minus the fluxes in the preceding and succeeding months. In stands of Fagus and Picea, two genera that do not form large amounts of flowers every year, TF fluxes of potassium (K+), ammonium-nitrogen (NH4+-N), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) showed a positive relationship with SPIn. However- for Fagus- a negative relationship was found between TF nitrate-nitrogen (NO3--N) fluxes and SPIn. For Quercus and Pinus, two genera producing many flowers each year, SPIn displayed limited variability and no clear association with TF element fluxes. Overall, pollen contributed on average 4.1-10.6% of the annual TF fluxes of K+ > DOC > DON > NH4+--N with the highest contribution in Quercus > Fagus > Pinus > Picea stands. Tree pollen appears to affect TF inorganic nitrogen fluxes both qualitatively and quantitatively, acting as a source of NH4+--N and a sink of NO3--N. Pollen appears to play a more complex role in nutrient cycling than previously thought.
  •  
3.
  • Pilotto, Francesca, et al. (författare)
  • Meta-analysis of multidecadal biodiversity trends in Europe
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. The global biodiversity decline might conceal complex local and group-specific trends. Here the authors report a quantitative synthesis of longterm biodiversity trends across Europe, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy