SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thombare Ketan) "

Sökning: WFRF:(Thombare Ketan)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almby, Kristina E., et al. (författare)
  • Effects of GLP-1 on counter-regulatory responses during hypoglycemia after GBP surgery
  • 2019
  • Ingår i: European Journal of Endocrinology. - : Bioscientifica. - 0804-4643 .- 1479-683X. ; 181:2, s. 161-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: The aim of the study was to explore the role of GLP-1 receptor activation on the counter-regulation and symptoms of hypoglycemia in subjects who have undergone gastric bypass surgery (GBP).Design: Experimental hyperinsulinemic–hypoglycemic clamp study.Methods: Twelve post-GBP subjects participated in a randomized cross-over study with two hyperinsulinemic, hypoglycemic clamps (glucose nadir 2.7 mmol/L) performed on separate days with concomitant infusions of the GLP-1 analog exenatide or with saline, respectively. Continuous measurements of metabolites and counter-regulatory hormones as well as assessments of heart rate variability and symptoms of hypoglycemia were performed throughout the clamps.Results: No effect of GLP-1 receptor activation on counter-regulatory hormones (glucagon, catecholamines, cortisol, GH) or glucose infusion rate was seen, but we found indications of a downregulation of the sympathetic relative to the parasympathetic nerve activity, as reflected in heart rate variability. No significant differences in symptom of hypoglycemia were observed.Conclusions/interpretation: Short-term exposure to a GLP-1 receptor agonist does not seem to impact the counter-regulatory hormonal and metabolic responses in post-GBP subjects during hypoglycemic conditions, suggesting that the improvement in symptomatic hypoglycemia post-GBP seen following treatment with GLP-1 receptor agonists may be mediated by mechanism not directly involved in counter-regulation.
  •  
2.
  • Djos, Anna, 1983, et al. (författare)
  • Telomere Maintenance Mechanisms in a Cohort of High-Risk Neuroblastoma Tumors and Its Relation to Genomic Variants in the TERT and ATRX Genes
  • 2023
  • Ingår i: CANCERS. - 2072-6694. ; 15:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor cells are hallmarked by their capacity to undergo unlimited cell divisions, commonly accomplished either by mechanisms that activate TERT or through the alternative lengthening of telomeres pathway. Neuroblastoma is a heterogeneous pediatric cancer, and the aim of this study was to characterize telomere maintenance mechanisms in a high-risk neuroblastoma cohort. All tumor samples were profiled with SNP microarrays and, when material was available, subjected to whole genome sequencing (WGS). Telomere length was estimated from WGS data, samples were assayed for the ALT biomarker c-circles, and selected samples were subjected to methylation array analysis. Samples with ATRX aberration in this study were positive for c-circles, whereas samples with either MYCN amplification or TERT re-arrangement were negative for c-circles. Both ATRX aberrations and TERT re-arrangement were enriched in 11q-deleted samples. An association between older age at diagnosis and 1q-deletion was found in the ALT-positive group. TERT was frequently placed in juxtaposition to a previously established gene in neuroblastoma tumorigenesis or cancer in general. Given the importance of high-risk neuroblastoma, means for mitigating active telomere maintenance must be therapeutically explored.
  •  
3.
  • Ntika, Stelia, et al. (författare)
  • Oleate increase neutral lipid accumulation, cellular respiration and rescues palmitate-exposed GLP-1 secreting cells by reducing ceramide-induced ROS
  • 2019
  • Ingår i: Biochimie. - : ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER. - 0300-9084 .- 1638-6183. ; 159, s. 23-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Fatty acids (FAs), and especially monounsaturated FAs (MUFAs) stimulate GLP-1 release. However, lipotoxicity is indicated in GLP-1 secreting cells following long-term exposure to elevated levels of saturated FAs (SFAs) in vivo and in vitro, where in vitro studies indicate that cosupplementation with MUFAs confers lipoprotection. SFAs and MUFAs differentially affect the fate of cells in ways that depend on the cell type, concentration and ratio of the FAs. The present study was designed to further elucidate the mechanisms underlying the effects of SFAs/MUFAs on GLP-1-producing cells in terms of lipotoxicity/lipoprotection and GLP-1 secretion.Methods: Cultured GLP-1 secreting cells were exposed to hyperlipidemia simulated by SFA-albumin complexes where the molar ratio was 2:1. The cellular response to simulated hyperlipidemia was assessed in the presence/absence of MUFA cosupplementation by determining intracellular ceramide, ROS, neutral lipid accumulation, and cellular respiration. The role for cellular respiration in GLP-1 secretion in response to SFAs/MUFAs was assessed.Results: Generation of intracellular ceramide mediate a detrimental increased in ROS production following long term exposure to SFAs in GLP-1-secreting cells. Cosupplementation with MUFAs increases cellular respiration, triglyceride synthesis, and the expression of ceramide kinase, while reducing ceramide synthesis and attenuating ROS production, caspase-3 activity and DNA fragmentation. Further, acute secretory effects of unsaturated FAs are independent of FAO, but mediated by a FFAR1 induced increase in cellular respiration.Conclusion: This study demonstrates novel data supporting effects of MUFAs on the ceramide biosynthetic pathway, triglyceride storage respiration and secretion in GLP-1 secreting cells. These findings may be of value for nutritional interventions, as well as for identification of novel targets, to help preserve L-cell mass and potentiate GLP-1 secretion in diabesity.
  •  
4.
  • Pereira, Maria J, 1981-, et al. (författare)
  • Direct effects of glucagon on glucose uptake and lipolysis in human adipocytes
  • 2020
  • Ingår i: Molecular and Cellular Endocrinology. - : ELSEVIER IRELAND LTD. - 0303-7207 .- 1872-8057. ; 503
  • Tidskriftsartikel (refereegranskat)abstract
    • We aim to investigate the expression of the glucagon receptor (GCGR) in human adipose tissue, and the impact of glucagon in glucose uptake and lipolysis in human adipocytes. GCGR gene expression in human subcutaneous and visceral adipose tissue was demonstrated, albeit at low levels and with an inter-individual variation. Furthermore, GCGR expression was not significantly different between subjects with T2D and matched controls, and we found no significant association with BMI. Glucagon only at a supra-physiological concentration (10-100 nM) significantly increased basal and insulin-stimulated glucose uptake by up to 1.5-fold. Also, glucagon (0.01 and 1 nM) dose-dependently increased basal and isoproterenol-stimulated lipolysis up to 3.7- and 1.7-fold, respectively, compared to control. In addition, glucagon did not change insulin sensitivity to stimulate glucose uptake or inhibit lipolysis. In conclusion, we show that the GCGR gene is expressed at low levels in human adipose tissue, and glucagon at high concentrations can increase both glucose uptake and lipolysis in human adipocytes. Taken together, our data suggest that glucagon at physiological levels has minor direct effects on the regulation of adipocyte metabolism, but does not antagonize the insulin effect to stimulate glucose uptake and inhibit lipolysis in human adipocytes.
  •  
5.
  • Sarsenbayeva, Assel, et al. (författare)
  • Effects of second-generation antipsychotics on human subcutaneous adipose tissue metabolism
  • 2019
  • Ingår i: Psychoneuroendocrinology. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0306-4530 .- 1873-3360. ; 110
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Metabolic syndrome is prevalent in up to 50% of schizophrenia patients, which reduces their quality of life and their compliance with the treatment. It is unclear whether metabolic adverse effects of these agents are due to their direct effect on insulin-sensitive tissues or are secondary to increased adiposity. The study aimed to investigate the direct effects of the second-generation antipsychotics olanzapine and aripiprazole on human subcutaneous adipose tissue and isolated adipocyte metabolism.Methods: Abdominal subcutaneous adipose tissue needle biopsies were taken from 72 healthy subjects (49 F/23 M; age: 19-78 yr; BMI: 20.0-35.6 kg/m(2)). Isolated adipocytes or adipose tissue were respectively pre-incubated short- (30 min) and long-term (24 h, 72 h) with or without olanzapine (0.004 mu M - 20 mu M) and aripiprazole (0.002 mu M - 100 mu M). Pre-incubated adipose tissue was then snap-frozen for mRNA expression analysis of adipokines genes and genes involved in inflammation, adipogenesis, and mitochondrial function. Isolated adipocytes were used to measure basal and insulin-stimulated glucose uptake and lipolysis.Results: Acute treatment with a therapeutic concentration of olanzapine decreases basal lipolysis in isolated adipocytes; this effect was not observed after long-term incubation with the drug. Supra-therapeutic concentration of aripiprazole reduced basal and insulin-stimulated glucose uptake after short- and long-term preincubation. Both drugs at supra-therapeutic concentrations downregulated the expression of the pro-inflammatory cytokines IL6 and IL1B genes after 72 h incubation. Similarly, supra-therapeutic concentrations of both drugs and therapeutic concentration of olanzapine, reduced the expression of PPARGC1A, PDK4, and CPT1B genes involved in the regulation of mitochondria] functions. Neither of the antipsychotics affected the expression of the main adipokines LEP and ADIPOQ, genes involved in the regulation of lipid metabolism, LPL and FASN, nor the master adipogenesis regulator, PPARG.Conclusion: Therapheutic concentrations of olanzapine and aripiprazole have a moderate direct effect on adipocyte lipid and glucose metabolism, respectively. At supra-therapeutic concentrations, both of the antipsychotics seem to act as anti-inflammatory agents and mildly suppressed genes involved in the regulation of mitochondrial functions, which could potentially contribute to metabolic adverse effects. Alternatively, second-generation antipsychotics could induce metabolic side effects via acting on other insulin-sensitive tissues and central nervous system.
  •  
6.
  • Sharma, Tanuj, et al. (författare)
  • Identifying novel inhibitors targeting Exportin-1 for the potential treatment of COVID-19
  • 2024
  • Ingår i: ARCHIVES OF MICROBIOLOGY. - 0302-8933 .- 1432-072X. ; 206:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The nuclear export protein 1 (XPO1) mediates the nucleocytoplasmic transport of proteins and ribonucleic acids (RNAs) and plays a prominent role in maintaining cellular homeostasis. XPO1 has emerged as a promising therapeutic approach to interfere with the lifecycle of many viruses. In our earlier study, we proved the inhibition of XPO1 as a therapeutic strategy for managing SARS-COV-2 and its variants. In this study, we have utilized pharmacophore-assisted computational methods to identify prominent XPO1 inhibitors. After several layers of screening, a few molecules were shortlisted for further experimental validation on the in vitro SARS-CoV-2 cell infection model. It was observed that these compounds reduced spike positivity, suggesting inhibition of SARS-COV-2 infection. The outcome of this study could be considered further for developing novel antiviral therapeutic strategies against SARS-CoV-2.
  •  
7.
  • Thombare, Ketan, et al. (författare)
  • Long chain saturated and unsaturated fatty acids exert opposing effects on viability and function of GLP-1-producing cells : Mechanisms of lipotoxicity
  • 2017
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aim: Fatty acids acutely stimulate GLP-1 secretion from L-cells in vivo. However, a high fat diet has been shown to reduce the density of L-cells in the mouse intestine and a positive correlation has been indicated between L-cell number and GLP-1 secretion. Thus, the mechanism of fatty acid-stimulated GLP-1 secretion, potential effects of long-term exposure to elevated levels of different fatty acid species, and underlying mechanisms are not fully understood. In the present study, we sought to determine how long-term exposure to saturated (16:0) and unsaturated (18:1) fatty acids, by direct effects on GLP-1-producing cells, alter function and viability, and the underlying mechanisms.Methods: GLP-1-secreting GLUTag cells were cultured in the presence/absence of saturated (16:0) and unsaturated (18:1) fatty acids (0.125 mM for 48 h, followed by analyses of viability and apoptosis, as well as involvement of fatty acid oxidation, free fatty acid receptors (FFAR1) and ceramide synthesis. In addition, effects on the expression of proglucagon, prohormone convertase 1/3 (PC1/3), free fatty acid receptors (FFAR1, FFAR3), sodium glucose cotransporter (SGLT) and subsequent secretory response were determined.Results: Saturated (16:0) and unsaturated (18:1) fatty acids exerted opposing effects on the induction of apoptosis (1.4-fold increase in DNA fragmentation by palmitate and a 0.5-fold reduction by oleate; p<0.01). Palmitate-induced apoptosis was associated with increased ceramide content and co-incubation with Fumonisin B1 abolished this lipo apoptosis. Oleate, on the other hand, reduced ceramide content, and-unlike palmitate-upregulated FFAR1 and FFAR3, evoking a 2-fold increase in FFAR1-mediated GLP-1 secretion following acute exposure to 0.125 mmol/L palmitate; (p<0.05).Conclusion/Interpretation: Saturated (16:0), but not unsaturated (18:1), fatty acids induce ceramide-mediated apoptosis of GLP-1-producing cells. Further, unsaturated fatty acids confer lipoprotection, enhancing viability and function of GLP-1-secreting cells. These data provide potential mechanistic insight contributing to reduced L-cell mass following a high fat diet and differential effects of saturated and unsaturated fatty acids on GLP-1 secretion in vivo.
  •  
8.
  • Vaid, Roshan, et al. (författare)
  • Global loss of cellular m(6)A RNA methylation following infection with different SARS-CoV-2 variants
  • 2023
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 33:3, s. 299-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Insights into host-virus interactions during SARS-CoV-2 infection are needed to understand COVID-19 pathogenesis and may help to guide the design of novel antiviral therapeutics. N-6-Methyladenosine modification (m(6)A), one of the most abundant cellular RNA modifications, regulates key processes in RNA metabolism during stress response. Gene expression profiles observed postinfection with different SARS-CoV-2 variants show changes in the expression of genes related to RNA catabolism, including m(6)A readers and erasers. We found that infection with SARS-CoV-2 variants causes a loss of m(6)A in cellular RNAs, whereas m(6)A is detected abundantly in viral RNA. METTL3, the m(6)A methyltransferase, shows an unusual cytoplasmic localization postinfection. The B.1.351 variant has a less-pronounced effect on METTL3 localization and loss of m(6)A than did the B.1 and B.1.1.7 variants. We also observed a loss of m(6)A upon SARS-CoV-2 infection in air/liquid interface cultures of human airway epithelia, confirming that m(6)A loss is characteristic of SARS-CoV-2-infected cells. Further, transcripts with m(6)A modification are preferentially down-regulated postinfection. Inhibition of the export protein XPO1 results in the restoration of METTL3 localization, recovery of m(6)A on cellular RNA, and increased mRNA expression. Stress granule formation, which is compromised by SARS-CoV-2 infection, is restored by XPO1 inhibition and accompanied by a reduced viral infection in vitro. Together, our study elucidates how SARS-CoV-2 inhibits the stress response and perturbs cellular gene expression in an m(6)A-dependent manner.
  •  
9.
  • Vaid, Roshan, et al. (författare)
  • METTL3 drives telomere targeting of TERRA lncRNA through m6A-dependent R-loop formation: a therapeutic target for ALT-positive neuroblastoma
  • 2024
  • Ingår i: NUCLEIC ACIDS RESEARCH. - 0305-1048 .- 1362-4962.
  • Tidskriftsartikel (refereegranskat)abstract
    • Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N-6 position of internal adenosine (m(6)A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m(6)A/METTL3 results in telomere damage. We observed that m(6)A modification is abundant in R-loop enriched TERRA, and the m(6)A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m(6)A drives telomere targeting of TERRA via R-loops, and this m(6)A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB. [Graphical Abstract]
  •  
10.
  • Williams, Michael, et al. (författare)
  • The obesity-linked Nudt3 Drosophila homolog Aps is associated with insulin signalling
  • 2015
  • Ingår i: Molecular Endocrinology. - 0888-8809 .- 1944-9917. ; 29:9, s. 1303-1319
  • Tidskriftsartikel (refereegranskat)abstract
    • Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, llp6, and llp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (10)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Thombare, Ketan (10)
Mondal, Tanmoy, 1981 (4)
Vaid, Roshan (3)
Kogner, Per (2)
Martinsson, Tommy, 1 ... (2)
Fransson, Susanne, 1 ... (2)
visa fler...
Eriksson, Jan (2)
Pereira, Maria J., 1 ... (2)
Sarsenbayeva, Assel (2)
Almby, Kristina E. (2)
Lundqvist, Martin H. (2)
Djos, Anna, 1983 (2)
Carén, Helena, 1979 (1)
Eriksson, Anders (1)
Wiklund, Urban (1)
Umapathy, Ganesh (1)
Abrahamsson, Niclas, ... (1)
Sundbom, Magnus (1)
Eriksson, Jan W. (1)
Sihlbom, Carina, 197 ... (1)
Fredriksson, Robert (1)
Hammar, Ulf (1)
Kumar, Navinder, 198 ... (1)
Kamble, Prasad G. (1)
Bergsten, Peter (1)
Ringlander, Johan (1)
Jachimowicz, Daniel (1)
Karlsson, Anders, 19 ... (1)
Panagiotou, Amalia (1)
Lundqvist, Martin (1)
Williams, Michael (1)
Schiöth, Helgi (1)
Nyström, Kristina, 1 ... (1)
Churqui, Marianela P ... (1)
Paulsson, Johan (1)
Wang, Xuan (1)
Marques-Santos, Cáti ... (1)
Aryapoor, Masood (1)
Fischer, Matthias (1)
Voisin, Sarah (1)
Johnsen, John Inge (1)
Reinius, B (1)
Nystrom, K. (1)
Stenman, Jakob (1)
Gaarder, Jennie, 198 ... (1)
Reinsbach, Susanne E (1)
Georgantzi, Kleopatr ... (1)
Ek, Torben, 1963 (1)
Kristinsson, Hjalti (1)
Yamskova, Olga (1)
visa färre...
Lärosäte
Uppsala universitet (6)
Göteborgs universitet (4)
Karolinska Institutet (4)
Umeå universitet (1)
Mälardalens universitet (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy