SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Thonabulsombat C.) "

Sökning: WFRF:(Thonabulsombat C.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Glavaski-Joksimovic, A., et al. (författare)
  • Morphological differentiation of tau–green fluorescent protein embryonic stem cells into neurons after co-culture with auditory brain stem slices
  • 2009
  • Ingår i: Neuroscience. - : Elsevier. - 0306-4522 .- 1873-7544. ; 162:2, s. 472-481
  • Tidskriftsartikel (refereegranskat)abstract
    • Most types of congenital and acquired hearing loss are caused by loss of sensory hair cells in the inner ear and their respective afferent neurons. Replacement of spiral ganglion neurons (SGN) would therefore be one prioritized step in an attempt to restore sensory neuronal hearing loss. To initiate an SGN repair paradigm we previously transplanted embryonic neuronal tissue and stem cells (SC) into the inner ear in vivo. The results illustrated good survival of the implant. One such repair, however, would not have any clinical significance unless central connections from the implanted SIGN could be established. For the purpose of evaluating the effects of cell transplantation on cochlear nucleus (CN) neurons we have established organotypic brain stem (BS) cultures containing the CN. At present we have used in vitro techniques to study the survival and differentiation of tau-green fluorescent protein (GFP) mouse embryonic stem cells (MESC) as a mono- or co-culture with BS slices. For the co-culture, 300 mu m thick auditory BS slices encompassing the CN were prepared from postnatal Sprague-Dawley rats. The slices were propagated using the membrane interface method and the CN neurons labeled with Dil. After 5 +/- 2 days in culture a tau-GFP MESC suspension was deposited next to CN in the BS slice. Following deposition the MESC migrated towards the CN. One and two weeks after transplantation the co-cultures were fixed and immunostained with antibodies raised against neuroprogenitor, neuronal, glial and synaptic vesicle protein markers. Our experiments with the tau-GFP MESC and auditory BS co-cultures show a significant MESC survival but also differentiation into neuronal cells. The findings illustrate the significance of SC and auditory BS co-cultures regarding survival, migration, neuronal differentiation and connections.
  •  
3.
  • Herlenius, E., et al. (författare)
  • Functional stem cell integration assessed by organotypic slice cultures
  • 2012
  • Ingår i: Current Protocols in Stem Cell Biology. - : John Wiley & Sons. - 1941-7322 .- 1938-8969. ; 1:SUPPL.23
  • Tidskriftsartikel (refereegranskat)abstract
    • Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neuronal network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cellcell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy