SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tielens Alexander G. G. M.) "

Sökning: WFRF:(Tielens Alexander G. G. M.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zannese, Marion, et al. (författare)
  • OH as a probe of the warm-water cycle in planet-forming disks
  • 2024
  • Ingår i: NATURE ASTRONOMY. - 2397-3366. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Water is a key ingredient for the emergence of life as we know it. Yet, its destruction and reformation in space remain unprobed in warm gas (T > 300 K). Here we detect with the James Webb Space Telescope the emission of the hydroxyl radical (OH) from d203-506, a planet-forming disk exposed to external far-ultraviolet (FUV) radiation. These observations were made as part of the Early Release Science programme PDRs4All, which is focused on the Orion bar. The observed OH spectrum is compared with the results of quantum dynamical calculations to reveal two essential molecular processes. The highly excited rotational lines of OH in the mid-infrared are telltale signs of H2O destruction by FUV radiation. The OH rovibrational lines in the near-infrared are attributed to chemical excitation by the key reaction O + H-2 -> OH + H, which seeds the formation of water in the gas phase. These results show that under warm and irradiated conditions, water is destroyed and efficiently reformed through gas-phase reactions. We infer that, in this source, the equivalent of Earth oceans' worth of water is destroyed per month and replenished. This warm-water cycle could reprocess some water inherited from cold interstellar clouds and explain the lower deuterium fraction of water in Earth's oceans compared with that found around protostars.
  •  
2.
  • Bergner, Jenny, et al. (författare)
  • Astrochemistry With the Orbiting Astronomical Satellite for Investigating Stellar Systems
  • 2022
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media SA. - 2296-987X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemistry along the star- and planet-formation sequence regulates how prebiotic building blocks—carriers of the elements CHNOPS—are incorporated into nascent planetesimals and planets. Spectral line observations across the electromagnetic spectrum are needed to fully characterize interstellar CHNOPS chemistry, yet to date there are only limited astrochemical constraints at THz frequencies. Here, we highlight advances to the study of CHNOPS astrochemistry that will be possible with the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS). OASIS is a NASA mission concept for a space-based observatory that will utilize an inflatable 14-m reflector along with a heterodyne receiver system to observe at THz frequencies with unprecedented sensitivity and angular resolution. As part of a survey of H2O and HD toward ∼100 protostellar and protoplanetary disk systems, OASIS will also obtain statistical constraints on the emission of complex organics from protostellar hot corinos and envelopes as well as light hydrides including NH3 and H2S toward protoplanetary disks. Line surveys of high-mass hot cores, protostellar outflow shocks, and prestellar cores will also leverage the unique capabilities of OASIS to probe high-excitation organics and small hydrides, as is needed to fully understand the chemistry of these objects.
  •  
3.
  • Seitz, Fabian, et al. (författare)
  • Ions colliding with clusters of fullerenes-Decay pathways and covalent bond formations
  • 2013
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 139:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C-60 molecules following collisions with Ar2+, He2+, and Xe20+ at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C-60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C-60](n)(+) -> C-60(+) + (n - 1)C-60 evaporation model. Excitation energies in the range of only similar to 0.7 eV per C-60 molecule in a [C-60](13)(+) cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar2+ and He2+ collisions, we observe very efficient C-119(+) and C-118(+) formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C-59(+) or C-58(+) and C-60 during cluster fragmentation. In the Ar2+ case, it is possible to form even smaller C-120-2m(+) molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe20+ collisions.
  •  
4.
  • Zettergren, Henning, et al. (författare)
  • Bond formation in C-59(+)-C-60 collisions
  • 2014
  • Ingår i: XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013). - : Institute of Physics (IOP).
  • Konferensbidrag (refereegranskat)abstract
    • In this work, we show that keV-ions are able to remove single carbon atoms from individual fullerenes in clusters of C-60 molecules. This very efficiently leads to the formation of exotic q dumbbell molecules through secondary C-59(+) - C-60 collisions within the fragmenting cluster. Such molecular fusion processes are inherently different from those induced by photons where only products with even numbers of carbon atoms are observed. Thus, ion collisions ignite unique and hitherto overlooked secondary reactions in small aggregates of matter. This relates to the question on how complex molecules may form in e.g. space.
  •  
5.
  • Zettergren, Henning, et al. (författare)
  • Formation of dumb-bell C118 and C119 inside clusters of C60 -molecules
  • Tidskriftsartikel (refereegranskat)abstract
    • We report highly selective covalent bond-modifications in collisions between keV alpha particles and van der Waals clusters of C60-fullerenes. Surprisingly, C119+ and C118+ are the dominant molecular fusion products. We use Molecular Dynamics simulations to show that C59+ and C58+ ions - effectively produced in prompt knock-out processes with He2+ - react rapidly with C60 to form dumb-bell C119+ and C118+ . Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.
  •  
6.
  • Zettergren, Henning, et al. (författare)
  • Formations of Dumbbell C-118 and C-119 inside Clusters of C-60 Molecules by Collision with alpha Particles
  • 2013
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 110:18
  • Tidskriftsartikel (refereegranskat)abstract
    • We report highly selective covalent bond modifications in collisions between keV alpha particles and van der Waals clusters of C-60 fullerenes. Surprisingly, C-119(+) and C-118(+) are the dominant molecular fusion products. We use molecular dynamics simulations to show that C-59(+) and C-58(+) ions-effectively produced in prompt knockout processes with He2+-react rapidly with C-60 to form dumbbell C-119(+) and C-118(+). Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.
  •  
7.
  • Berne, Olivier, et al. (författare)
  • PDRs4All : A JWST Early Release Science Program on Radiative Feedback from Massive Stars
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
  •  
8.
  • Chen, Tao, et al. (författare)
  • Anharmonicity and the infrared emission spectrum of highly excited polycyclic aromatic hydrocarbons
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Infrared (IR) spectroscopy is a powerful tool to study molecules in space. A key issue in such analyses is understanding the effect that temperature and anharmonicity have on different vibrational bands, and thus interpreting the IR spectra for molecules under various conditions. Methods. We combined second order vibrational perturbation theory and the Wang-Landau random walk technique to produce accurate IR spectra of highly excited polycyclic aromatic hydrocarbons. We fully incorporated anharmonic effects, such as resonances, overtones, combination bands, and temperature effects. Results. The results are validated against experimental results for the pyrene molecule (C16H10). In terms of positions, widths, and relative intensities of the vibrational bands, our calculated spectra are in excellent agreement with gas-phase experimental data.
  •  
9.
  • Chen, Tao, et al. (författare)
  • Formation of H2 from internally heated polycyclic aromatic hydrocarbons : Excitation energy dependence
  • 2015
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 142:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the effectiveness of molecular hydrogen (H-2) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H-2 formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis also suggests that H-2 emission is correlated with multi-fragmentation processes, which means that the [PAH-2H](+) peak intensities in the mass spectra may not be used for estimating H-2-formation rates.
  •  
10.
  • Chen, Tao, et al. (författare)
  • Temperature effects on the infrared spectrum of molecules in planetary nebulae
  • 2017
  • Ingår i: Planetary nebulae. - : CAMBRIDGE UNIV PRESS. - 9781107169913 ; , s. 357-358
  • Konferensbidrag (refereegranskat)abstract
    • In this work, we utilize a method based on Wang-Landau Monte Carlo sampling for studying the temperature effects of astrophysically relavant molecules. Anharmonic effects, e.g., resonances, overtones, and combination bands, are fully incoportated in this method. The calculated infrared (IR) spectra are consistent with the experimental data measured by National Institute of Standards and Technology (NIST).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy